Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

In our previous Genome-wise Association Study we found that Cystic Fibrosis Transmem- brane Conductance Regulator gene (CFTR) is a candidate gene for sperm motility in fresh semen of Holstein-Friesian bulls. Since in cows thawed semen is commonly used for the artificial insem- ination (AI) we have decided to find out whether functional polymorphism within CFTR gene coding sequence is associated with selected parameters of thawed sperm, including their motility evaluated by computer-assisted sperm analysis (CASA), the activity of three antioxidant enzymes: glutathione peroxidase (GPx) catalase (CAT), superoxide dismutase (SOD), ATP con- tent and integrity of sperm membranes. One hundred twenty Holstein Friesian bulls kept in uni- form environmental conditions (one AI company) were included in the study. Significant associ- ations between genotypes of missense mutation within exon 11 of the CFTR gene (Met468Leu) and the activity of antioxidant enzymes and sperm mitochondrial function were revealed. No effect of CFTR genotypes on sperm motility was observed. Significant differences in CAT and SOD activity were found between AA and TT homozygous individuals. Bulls with TT genotype had the lowest activity of both antioxidant enzymes. The same bulls also showed the lowest num- ber of sperm with active mitochondria. Our results demonstrate that missense mutation Met468Leu within CFTR gene is associated with antioxidant enzyme activity and mitochondrial function of bovine thawed sperm without affecting their motility.
Go to article

Abstract

The influence of ambient solar UV-A or UV-B radiation on growth responses was investigated in three varieties of cotton (Gossypium hirsutum L.) after exclusion of solar UV-A/B radiation: JK-35, IH-63 and Khandwa-2. Cotton plants were grown from seeds in UV-exclusion chambers lined with selective UV filters to exclude either UV-B (280-315 nm) or UV-A/B (280-400 nm) from the solar spectrum under field conditions. Excluding UV-B and UV-A/B significantly increased plant height, leaf area and dry weight accumulation in all three varieties of cotton. The varieties differed considerably in their sensitivity to ambient UV-A/B. Khandwa-2 was most sensitive and JK-35 least sensitive to ambient solar UV. We monitored the activity of the antioxidant enzymes superoxide dismutase (SOD), ascorbic acid peroxidase (APX), glutathione reductase (GR) and guaiacol peroxidase (GPX), as well as the level of the antioxidant ascorbic acid (ASA), in primary leaves of the most UV-sensitive variety (Khandwa-2). The level of UV-B-absorbing substances was significantly decreased by exclusion of solar UV-B and UV-A/B. Exclusion of solar UV decreased the activity of all the antioxidant enzymes monitored and the level of ascorbic acid versus control plants (+UV-A/B) grown under filters transparent to solar UV. Reduction of the antioxidant defense after UV exclusion indicates that ambient solar UV exerts significant stress and induces some reactive oxygen species to accumulate, which in turn retards the growth and development of cotton plants. Ambient solar UV stresses cotton plants, shifting their metabolism towards defense against solar UV. Exclusion of solar UV eliminates the need for that defense and leads to enhancement of primary metabolism.
Go to article

Abstract

We examined the effects of feeding by the polyphagous insect Coccus hesperidum on its host plant Nephrolepis biserrata under different intensities of infestation. As an effect of scale insect feeding there were significant changes in the values of parameters reflecting the state of cell membranes. N. biserrata plants reacted to the biotic stress by increasing guaiacol peroxidase activity and decreasing catalase activity. Our data show that these processes play key roles in plant tolerance mechanisms, here the fern’s response to insect feeding. The observed complex reaction of N. biserrata testifies to actively proceeding, complex and very often contrasting mechanisms triggered with the aim of neutralizing the effects of biotic stress and enabling normal cell functioning in plants attacked by scale insects
Go to article

Abstract

Two fungal strains, isolated from Livingston Island, Antarctica (Penicillium commune 161, psychrotolerant and Aspergillus glaucus 363, mesophilic) were investigated for a relationship between growth temperature and oxidative stress response. Cultivation at temperatures below - (10 and 15°C and 10 and 20°C for P. commune and A. glaucus, respectively) and above (25°C and 30°C for P. commune and A. glaucus, respectively) the optimum caused significant difference in growth and glucose uptake in comparison with the control cultures. Enhanced level of reserve carbohydrates (glycogen and trehalose) was determined under cultivation at different temperatures from the optimal one. While the highest content of trehalose was found in the exponential phase, glycogen accumulation was observed in the stationary phase when growth conditions deteriorate. The growth at temperature below- and above-optimum caused strain-dependent changes in two antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). While SOD activity in the psychrotolerant strain increases with decreasing of growth temperature, the mesophilic A. glaucus demonstrated marked reduction of it at below- and above-optimal temperature. Decreasing trend of CAT activity was observed in both strains below the optimal temperature indicating a lack of antioxidant protection from this enzyme under the cold stress conditions.
Go to article

This page uses 'cookies'. Learn more