Search results

Filters

  • Journals

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

The aim of this study was to compare and analyze the gasification process of beech wood. The experimental investigation was conducted inside a gasifier, which can be operated in downdraft and updraft gasification system. The most important operating parameter studied in this paper was the influence of the amount of supply air on the temperature distribution, biomass consumption and syngas calorific value. The results show that the amount of air significantly influences the temperature in the combustion zone for the downdraft gasification process, where temperature differences reached more than 150 ◦C.The increased amount of air supplied to the gasifier caused an increase in fuel consumption for both experimental setups. Experimental results regarding equivalence ratio show that for value below 0.2, the updraft gasification is characterized by a higher calorific value of producer gas, while for about 0.22 a similar calorific value (6.5 MJ/Nm3) for both gasification configurations was obtained. Above this value, an increase in equivalence ratio causes a decrease in the calorific value of gas for downdraft and updraft gasifiers.
Go to article

Abstract

One of the methods of obtaining energy from renewable sources is the technology of indirect cofiring of biomass. It consists in the gasification of secondary fuel and combustion of the generated gas in the boiler together with its primary fuel. The paper presents a thermodynamic analysis of the use of the boiler flue gases as the converting medium in the process of indirect co-firing - a technology which is being developed at the Institute of Power Engineering and Turbomachinery of the Silesian University of Technology. The basis of the analysis are the data resulting from variant calculations conducted with the use of the Gaseq program. The calculations were made for various compositions of gasified fuel and the converting medium, variable fuel/oxidiser ratios and variable gasification temperatures. As a result, the equilibrium composition and the calorific value of the generated gas were obtained. The main optimisation objective adopted here was the nondimensional efficiency coefficient, which is the ratio of the chemical energy of products to the chemical energy of the process reactants.
Go to article

Abstract

Thermodynamic equilibrium-based models of gasification process are relatively simple and widely used to predict producer gas characteristics in performance studies of energy conversion plants. However, if an unconstrained calculation of equilibrium is performed, the estimations of product gas yield and heating value are too optimistic. Therefore, reasonable assumptions have to be made in order to correct the results. This paper proposes a model of the process that can be used in case of deficiency of information and unavailability of experimental data. The model is based on free energy minimization, material and energy balances of a single zone reactor. The constraint quasi-equilibrium calculations are made using approximated amounts of non-equilibrium products, i.e. solid char, tar, CH4 and C2H4. The yields of these products are attributed to fuel characteristics and estimated using experimental results published in the literature. A genetic algorithm optimization technique is applied to find unknown parameters of the model that lead to the best match between modelled and experimental characteristics of the product gas. Finally, generic correlations are proposed and quality of modelling results is assessed in the aspect of its usefulness for performance studies of power generation plants.
Go to article

Abstract

The subject of the CFD analysis presented in this paper is the process of biomass indirect co-firing carried out in a system composed of a stoker-fired furnace coupled with a gasification reactor. The installation is characterised by its compact structure, which makes it possible to minimise heat losses to the environment and enhance the physical enthalpy of the oxidising agent – flue gases – having a favourable chemical composition with oxygen and water vapour. The test results provided tools for modelling of biomass thermal processing using a non-standard oxidiser in the form of flue gases. The obtained models were used to optimise the indirect co-combustion process to reduce emissions. An overall effect of co-combustion of gas from biomass gasification in the stoker furnace is the substantial reduction in NO emissions by about 22%.
Go to article

This page uses 'cookies'. Learn more