Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

This paper demonstrates that if a linear dependence of arc dissipated power on power supplied is introduced at an initial stage of analysis, then, with some simplifying assumptions, the classical Mayr model is obtained. Similarly, if this dependence is taken into account in a model with residual conductance, the modified Mayr model is obtained. The study takes into consideration the local phenomenon of sudden voltage drop accompanying linear current decrease occurring in the circuit breaker. To account for this phenomenon, the Dirac delta function and its approximation by a Gaussian function, representing power or enthalpy disturbances, are introduced to the power balance equation. It is demonstrated that both variants yield the same effect, leading to identical differential equations. Macromodels of the circuit-breaker arc are created and connected with the power source circuit with lin- early decreasing current. The results obtained were found to be consistent with experimental data available in the literature. The models presented are based on a fairly uncomplicated 1st order differential equation and offer a straightforward physical interpretation of the phenomena in question.
Go to article

Abstract

The paper discusses in detail the construction of the Core Less Axial Flux Permanent Magnet generator simulation model. The model has been prepared in such a way that full compatibility with the elements of the SimPowerSystem library of the Matlab/Simulink package is preserved, which allows easy use of the presented simulation model for testing the work of the generator as part of a larger system. The parameters used in the model come from the MES 3D calculations performed in the Ansys/Maxwell software, for a machine prototype with a rated power of 2.8 kW, which was then used to experimentally verify the correct operation of the presented model of machine.
Go to article

Abstract

The paper presents a simulation model of the hybrid magnetic bearing dedicated to simulations of transient state. The proposed field-circuit model is composed of two components. The first part constitutes a set of ordinary differential equations that describes electrical circuits and mechanics. The second part of the simulation model consists of parameters such as magnetic forces, dynamic inductances and velocity-induced voltages obtained from the 3D finite element analysis. The MATLAB/Simulnik softwarewas used to implement the simulation model with the required control system. The proposed field-circuit model was validated by comparison of time responses with the prototype of the hybrid magnetic bearing.
Go to article

Abstract

Surface Acoustic Wave (SAW) devices like delay lines, filters, resonators etc., are nowadays extensively used as principal solid state components in many electronic applications and chemical vapour sensors. To bring out the best from these SAW devices, computational design and modelling are resorted too. The present paper proposes the modelling of 400 MHz ST-X Quartz based SAW delay line, by three models namely, Impulse Response Model (IRM), Crossed-field Equivalent Circuit Model (ECM) and Couplingof- Modes (COM) model. MATLABr is employed as a computational tool to model the experimental output of the SAW device. A comparative discussion of the modelled device results is also provided.
Go to article

Abstract

While the Slope Fault Model method can solve the soft-fault diagnosis problem in linear analog circuit effectively, the challenging tolerance problem is still unsolved. In this paper, a proposed Normal Quotient Distribution approach was combined with the Slope Fault Model to handle the tolerances problem in soft-fault diagnosis for analog circuit. Firstly, the principle of the Slope Fault Model is presented, and the huge computation of traditional Slope Fault Characteristic set was reduced greatly by the elimination of superfluous features. Several typical tolerance handling methods on the ground of the Slope Fault Model were compared. Then, the approximating distribution function of the Slope Fault Characteristic was deduced and sufficient conditions were given to improve the approximation accuracy. The monotonous and continuous mapping between Normal Quotient Distribution and standard normal distribution was proved. Thus the estimation formulas about the ranges of the Slope Fault Characteristic were deduced. After that, a new test-nodes selection algorithm based on the reduced Slope Fault Characteristic ranges set was designed. Finally, two numerical experiments were done to illustrate the proposed approach and demonstrate its effectiveness.
Go to article

This page uses 'cookies'. Learn more