Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy publikacji
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 2
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Plants adapt to extremely low temperatures in polar regions by maximizing their photosynthetic efficiency and accumulating cryoprotective and osmoprotective compounds. Flowering plants of the family Poaceae growing in the Arctic and in the Antarctic were investigated. Their responses to cold stress were analyzed under laboratory conditions. Samples were collected after 24 h and 48 h of cold treatment. Quantitative and qualitative changes of sugars are found among different species, but they can differ within a genus of the family Poaceae. The values of the investigated parameters in Poa annua differed considerably depending to the biogeographic origin of plants. At the beginning of the experiment, Antarctic plants were acclimatized in greenhouse characterized by significantly higher content of sugars, including storage reserves, sucrose and starch, but lower total protein content. After 24 h of exposure to cold stress, much smaller changes in the examined parameters were noted in Antarctic plants than in locally grown specimens. Total sugar content and sucrose, starch and glucose levels were nearly constant in P. annua, but they varied significantly. Those changes are responsible for the high adaptability of P. annua to survive and develop in highly unsupportive environments and colonize new regions.
Przejdź do artykułu

Abstrakt

This study investigated leaf mesophyll cells of Caryophyllaceae plants growing in polar regions – Cerastium alpinum and Silene involucrata from the Hornsund region of Spitsbergen island (Svalbard Archipelago, Arctic), and Colobanthus quitensis from the Admiralty Bay region on King George Island (South Shetland Islands, West Antarctic). Ultra− structural changes were analyzed in mesophyll protoplasts of plants growing in natural Arctic and Antarctic habitats and plants grown in a greenhouse, including plants exposed to short−term cold stress under se mi−controlled conditions. Cell organelles of plants growing in natural polar habitats and greenhouse−grown plants were characterized by significant morphological plasticity. Chloroplasts of plants studied in this work formed variously shaped protrusions and invaginations that visibly increased the contact area between adjacent cell compartments and reduced the distance between organelles. S. involucrata plants grown under greenhouse conditions, tested by us in this wor k, were characterized by highly dynamic cell nuclei with single or multiple invaginations of the nuclear membrane and the presence of channels and cisternae filled with cytoplasm and organelles. Crystalline inclusion proteins were observed in the cell nuclei of C. quitensis between nuclear membranes and in the direct proximity of heterochromatin. Our study revealed significant conformational dynamics of organelles, manifested by variations in the optical density of matrices, membranes and envelopes, in particular in C. quitensis , which could suggest that the analyzed Caryophyllaceae taxa are well adapted to severe climate and changing conditions in polar regions.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji