Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

This paper researches the application of grey system theory in cost forecasting of the coal mine. The grey model (GM(1.1)) is widely used in forecasting in business and industrial systems with advantages of minimal data, a short time and little fluctuation. Also, the model fits exponentially with increasing data more precisely than other prediction techniques. However, the traditional GM(1.1) model suffers from the poor anti-interference ability. Aimed at the flaws of the conventional GM(1.1) model, this paper proposes a novel dynamic forecasting model with the theory of background value optimization and Fourier-series residual error correction based on the traditional GM(1.1) model. The new model applies the golden segmentation optimization method to optimize the background value and Fourier-series theory to extract periodic information in the grey forecasting model for correcting the residual error. In the proposed dynamic model, the newest data is gradually added while the oldest is removed from the original data sequence. To test the new model’s forecasting performance, it was applied to the prediction of unit costs in coal mining, and the results show that the prediction accuracy is improved compared with other grey forecasting models. The new model gives a MAPE & C value of 0.14% and 0.02, respectively, compared to 1.75% and 0.37 respectively for the traditional GM(1.1) model. Thus, the new GM(1.1) model proposed in this paper, with advantages of practical application and high accuracy, provides a new method for cost forecasting in coal mining, and then help decision makers to make more scientific decisions for the mining operation.
Go to article

Abstract

The paper considers an algorithm for increasing the accuracy of measuring systems operating on moving objects. The algorithm is based on the Kalman filter. It aims to provide a high measurement accuracy for the whole range of change of the measured quantity and the interference effects, as well as to eliminate the influence of a number of interference sources, each of which is of secondary importance but their total impact can cause a considerable distortion of the measuring signal. The algorithm is intended for gyro-free measuring systems. It is based on a model of the moving object dynamics. The mathematical model is developed in such a way that it enables to automatically adjust the algorithm parameters depending on the current state of measurement conditions. This makes possible to develop low-cost measuring systems with a high dynamic accuracy. The presented experimental results prove effectiveness of the proposed algorithm in terms of the dynamic accuracy of measuring systems of that type.
Go to article

Abstract

The paper presents a new method for building measuring instruments and systems for gyro-free determination of the parameters of moving objects. To illustrate the qualities of this method, a system for measuring the roll, pitch, heel and trim of a ship has been developed on its basis. The main concept of the method is based, on one hand, on a simplified design of the base coordinate system in the main measurement channel so as to reduce the instrumental errors, and, on the other hand, on an additional measurement channel operating in parallel with the main one and whose hardware and software platform makes possible performing algorithms intended to eliminate the dynamic error in real time. In this way, as well as by using suitable adaptive algorithms in the measurement procedures, low-cost measuring systems operating with high accuracy under conditions of inertial effects and whose parameters (intensity and frequency of the maximum in the spectrum) change within a wide range can be implemented.
Go to article

This page uses 'cookies'. Learn more