Search results

Filters

  • Journals
  • Date

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

In this study, molten salt electrorefining was used to recover indium metal from In-Sn crude metal sourced from indium tin oxide (ITO) scrap. The electrolyte used was a mixture of eutectic LiF-KF salt and InF3 initiator, melted and operated at 700°C. Voltammetric analysis was performed to optimize InF3 content in the electrolyte, and cyclic voltammetry (CV) was used to determine the redox potentials of In metal and the electrolyte. The optimum initiator concentration was 7 wt% of InF3, at which the diffusion coefficients were saturated. The reduction potential was controlled by applying constant current densities of 5, 10, and 15 mA/cm2 using chronopotentiometry (CP) techniques. In metal from the In-Sn crude melt was deposited on the cathode surface and was collected in an alumina crucible.
Go to article

Abstract

The effect of cationic, anionic and nonionic surface active additives, organic compounds and polymers on the electrodeposition of Zn-Mo coatings on steel substrate and detailed characterization in chosen optimal conditions was studied. The influence of polyethylene glycol (PEG) various concentration, sodium dodecyl sulphate (SDS), triton X-100, d-sorbitol, cetyl trimethyl ammonium bromide (CTAB), thiourea and disodium ethylenediaminetetraacetate (EDTA) on the electrodeposition process was examined. The composition of deposits was defined by wavelength dispersive X-ray fluorescence spectrometry (WDXRF). Results has shown that the current efficiency of the electrodeposition of Zn-Mo coatings is 71.4%, 70.7%, 66.7% for 1.5 g/dm3 PEG 20000, 0.1 g/dm3 Triton X-100 and 0.75 M D-sorbitol respectively. The surface topography and roughness of selected coatings on steel was investigated by atomic force microscopy (AFM). The attendance of D-sorbitol of 0.75 M in the solution cause clear reduction of grain size and the value of roughness parameter (Ra) in relation to SDS, PEG, Triton X-100 and the sample prepared without the additives. The morphology of electrodeposited layers was studied by scanning electron microscopy (SEM). The addition of selected additives to the electrolytic bath results in the formation of smoother, brighter and more compact Zn-Mo coatings in comparison to layers obtained from similar electrolytes but without the addition of surfactants. The optimal concentration of the most effective additives such as PEG 20000, Triton X-100 and D-sorbitol is 1.5 g/dm3, 0.1 g/dm3, 0.75 M respectively.
Go to article

Abstract

This work presents the studies on the electrochemical process of thin palladium layers formation onto electrodeposited cobalt coatings. The suggested methodology consists of the preparation of thick and smooth cobalt substrate via galvanostatic electrodeposition. Cobalt coatings were prepared under different cathodic current density conditions from acidic bath containing cobalt sulphate and addition of boric acid. Obtained cobalt layers were analyzed by x-ray diffraction to determine their phase composition. Freshly prepared cobalt coatings were modificated by the galvanic displacement method in PdCl2 solution, to obtain smooth and compact Pd layer. The comparison of electrocatalytic properties of Co coatings with Co/Pd ones enabled to determine the influence of Palladium presence in cathodic deposits on the hydrogen evolution process.
Go to article

Abstract

This paper presents the results of experiments on metallization of plastic elements produced using 3D printing technology from the light-hardened resins. The obtained coatings were bimetallic (Cu/Ni). The first step of metallization was the electroless deposition of copper. The second one was electrodeposition of nickel on the previously prepared copper substrate. The parameters of 3D prints preparation and metallization processes were deeply investigated. The etching of plastics substrates and duration of electroless metallization of 3D prints by copper were analyzed. In the next step the influence of nickel electrodeposition time was investigated. The coating were analyzed by XRD method and morphology of surface was analyzed by scanning electron microscopy (SEM). The thickness of coatings was calculated based on mass differences and measured by using optical microscopy method. The optimal parameters for both processes were specified.
Go to article

This page uses 'cookies'. Learn more