Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy publikacji
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 2
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

The paper presents a method of measuring the angle of rotation and twist using a tilted fibre Bragg grating (TFBG) periodic structure with a tilt angle of 6◦, written into a single-mode optical fibre. It has been shown that the rotation of the sensor by 180◦ causes a change in the transmission coefficient from 0.5 to 0.84 at a wavelength of 1541.2 nm. As a result of measurements it was determined that the highest sensitivity can be obtained for angles from 30◦ to 70◦ in relation to the basic orientation. The change in the transmission spectrum occurs for cladding modes that change their intensity with the change in the polarization of light propagating through the grating. The same structure can also be used to measure the twist angle. The possibility of obtaining a TFBG twist by 200◦ over a length of 10 mm has been proved. This makes it possible to monitor both the angle of rotation and the twist of an optical fibre with the fabricated TFBG.
Przejdź do artykułu

Abstrakt

Real-time monitoring of deformation of large structure parts is of great significance and the deformation of such structure parts is often accompanied with the change of curvature. The curvature can be obtained by measuring changes of strain, surface curve and modal displacement of the structure. However, many factors are faced with difficulty in measurement and low sensitivity at a small deformation level. In order to measure curvature in an effective way, a novel fibre Bragg grating (FBG) curvature sensor is proposed, which aims at removing the deficiencies of traditional methods in low precision and narrow adjusting. The sensor combines two FBGs with a specific structure of stainless steel elastomer. The elastomer can transfer the strain of the structure part to the FBG and then the FBG measures the strain to obtain the curvature. The performed simulation and experiment show that the sensor can effectively amplify the strain to the FBG through the unique structure of the elastomer, and the accuracy of the sensor used in the experiment is increased by 14% compared with that of the FBG used for direct measurement.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji