Search results

Filters

  • Journals
  • Date

Search results

Number of results: 13
items per page: 25 50 75
Sort by:

Abstract

In this study the potential usefulness of infrared thermography (IRT) as a non-invasive tool to rapidly screen the most common non-infectious foot lesions in dairy cows was evaluated. Thirty-eight healthy cows and 38 cows affected by foot diseases were enrolled. Diseased cows showed the following disorders at lateral and medial claw in the hind foot: white line lesion, sole ulcer, sole haemorrhage, horizontal fissure, axial fissure. Thermography images of hind foot were collected for each animal using a digital infrared camera. Foot temperature was measured in four regions: central area of the hind foot (A1), interdigital area of the hind foot (A2), lateral (A3) and medial (A4) claw in the hind foot. Higher temperature values in the regions A1 and A2 compared to A3 and A4 were found in both healthy and diseased cows (p0.001). Cows affected by foot diseases showed higher foot temperature values compared to healthy cows (p0.05) in all considered regions. This study highlights the potential application of IRT as a reliable, practical tool for detection of hoof lesions in dairy cows. Multiple scanning images and comparisons between affected and healthy anatomical structures could be useful in defining the consistency of abnormality.
Go to article

Abstract

Development of facial recognition or expression recognition algorithms requires input data to thoroughly test the performance of algorithms in various conditions. Researchers are developing various methods to face challenges like illumination, pose and expression changes, as well as facial disguises. In this paper, we propose and establish a dataset of thermal facial images, which contains a set of neutral images in various poses as well as a set of facial images with different posed expressions collected with a thermal infrared camera. Since the properties of face in the thermal domain strongly depend on time, in order to show the impact of aging, collection of the dataset has been repeated and a corresponding set of data is provided. The paper describes the measurement methodology and database structure. We present baseline results of processing using state-of-the-art facial descriptors combined with distance metrics for thermal face reidentification. Three selected local descriptors, a histogram of oriented gradients, local binary patterns and local derivative patterns are used for elementary assessment of the database. The dataset offers a wide range of capabilities – from thermal face recognition to thermal expression recognition.
Go to article

Abstract

Convective and radiation heat transfer take place between various objects placed in open air space and their surroundings. These phenomena bring about heat losses from pipelines, building walls, roofs and other objects. One of the main tasks in energy auditing is the reduction of excessive heat losses. In the case of a low sky temperature, the radiation heat exchange is very intensive and the temperature of the top part of the horizontal pipelines or walls is lower than the temperature of their bottom parts. Quite often this temperature is also lower than the temperature of the surrounding atmospheric air. In the case of overhead heat pipelines placed in open air space, it is the ground and sky that constitute the surroundings. The aforementioned elements of surroundings usually have different values of temperature. Thus, these circumstances bring about difficulties during infrared inspections because only one ambient temperature which represents radiation of all surrounding elements must be known during the thermovision measurements. This work is aimed at the development of a method for determination of an equivalent ambient temperature representing the thermal radiation of the surrounding elements of the object under consideration placed in open air space, which could be applied at a fairly uniform temperature of the sky during the thermovision measurements as well as for the calculation of radiative heat losses.
Go to article

Abstract

The dynamic process of the interaction between a turbulent jet diffusion methane flame and a lateral wall was experimentally studied. The evolution of the flame temperature field with the Nitrogen dilution of the methane jet flame was examined. The interaction between the diffusion flame and the lateral wall was investigated for different distance between the wall and the central axes of the jet flame. The dilution is found to play the central role in the flame extinction process. The flame response as the lateral wall approaches from infinity and the increasing of the dilution rate make the flame extinction more rapid than the flame without dilution, when the nitrogen dilution rate increase the flame temperature decrease.
Go to article

Abstract

A mode-locked Tm3+-doped fibre laser and amplifier operating at a central wavelength of 1994.3 nm is demonstrated. A thulium oscillator is passively mode-locked by a semiconductor saturable absorber mirror to generate an average power of 17 mW at a fundamental repetition rate of 81 MHz in a short linear cavity. This 2-mm laser train is amplified to an average power to 20.26 W by two double-clad thulium-doped allfibre amplifiers. The pulse energy, duration and peak power is 250 nJ, 23 ps and 9.57 kW, respectively. This represents one of the highest values of average power at #24; 2-mm-wavelength for picosecond thulium-doped fibre lasers and amplifiers. The performance of the laser system is described in details.
Go to article

Abstract

A novel method for thermal diffusivity evolution of thin-film materials with pulsed Gaussian beam and infrared video is reported. Compared with common pulse methods performed in specialized labs, the proposed method implements a rapid on-line measurement without producing the off-centre detection error. Through mathematical deduction of the original heat conduction model, it is discovered that the area s, which is encircled by the maximum temperature curve rTMAX(θ), increases linearly over elapsed time. The thermal diffusivity is acquired from the growth rate of the area s. In this study, the off-centre detection error is avoided by performing the distance regularized level set evolution formulation. The area s was extracted from the binary images of temperature variation rate, without inducing errors from determination of the heat source centre. Thermal diffusivities of three materials, 304 stainless steel, titanium, and zirconium have been measured with the established on-line detection system, and the measurement errors are: −2.26%, −1.07%, and 1.61% respectively.
Go to article

Abstract

Effects of infrared power output and sample mass on drying behaviour, colour parameters, ascorbic acid degradation, rehydration characteristics and some sensory scores of spinach leaves were investigated. Within both of the range of the infrared power outputs, 300–500 W, and sample amounts, 15–60 g, moisture content of the leaves was reduced from 6.0 to 0.1±(0.01) kg water/kg dry base value. It was recorded that drying times of the spinach leaves varied between 3.5–10 min for constant sample amount, and 4–16.5 min for constant power output. Experimental drying data obtained were successfully investigated by using artificial neural network methodology. Some changes were recorded in the quality parameters of the dried leaves, and acceptable sensory scores for the dried leaves were observed in all of the experimental conditions.
Go to article

Abstract

In the paper recent progress at VIGO/MUT (Military University of Technology) MOCVD Laboratory in the growth of Hg1-xCdxTe (HgCdTe) multilayer heterostructures on GaAs/CdTe substrates is presented. The optimum conditions for the growth of single layers and complex multilayer heterostructures have been established. One of the crucial stages of HgCdTe epitaxy is CdTe nucleation on GaAs substrate. Successful composite substrates have been obtained with suitable substrate preparation, liner and susceptor treatment, proper control of background fluxes and appropriate nucleation conditions. The other critical stage is the interdi#27;used multilayer process (IMP). The growth of device-quality HgCdTe heterostructures requires complete homogenization of CdTe-HgTe pairs preserving at the same time suitable sharpness of composition and doping profiles. This requires for IMP pairs to be very thin and grown in a short time. Arsenic and iodine have been used for acceptor and donor doping. Suitable growth conditions and post growth anneal is essential for stable and reproducible doping. In situ anneal seems to be sufficient for iodine doping at any required level. In contrast, efficient As doping with near 100% activation requires ex situ anneal at near saturated mercury vapours. As a result we are able to grow multilayer fully doped (100) and (111) heterostructures for various infrared devices including photoconductors, photoelectromagnetic and photovoltaic detectors. The present generation of uncooled long wavelength infrared devices is based on multijunction photovoltaic devices. The technology steps in fabrication of devices are described. It is shown that near-BLIP performance is possible to achieve at ≈ 230 K with optical immersion. These devices are especially promising as 7.8–9.5 um detectors, indicating the potential for achieving detectivities above 109 cmHz1/2/W.
Go to article

Abstract

The paper presents verification of a peak detection method cooperating with infrared radiation detector module applications. The work has been divided into parts including SPICE simulations and presentation of results obtained with the constructed prototype. The design of the peak detector dedicated to applications with very short pulses requires a different approach than that for standard solutions. It is mainly caused due to the ratio of pulse width and time period. In the described application this ratio is less than 10%. The paper shows testing of an analogue circuit which is capable to be inserted in these applications.
Go to article

Abstract

Y2O3-MgO nanocomposites are one of the most promising materials for hypersonic infrared windows and domes due to their excellent optical transmittance and mechanical properties. In this study, influence of the calcination temperature of Y2O3-MgO nanopowders on the microstructure, IR transmittance, and hardness of Y2O3-MgO nanocomposites was investigated. It was found that the calcination temperature is related to the presence of residual intergranular pores and grain size after spark plasma sintering. The nanopowders calcined at 1000°C exhibits the highest infrared transmittance (82.3% at 5.3 μm) and hardness (9.99 GPa). These findings indicated that initial particle size and distribution of the nanopowders are important factors determining the optical and mechanical performances of Y2O3-MgO nanocomposites.
Go to article

Abstract

Precision casting is currently motivated by high demand especially for castings for the aerospace, automotive and gas turbine industries. High demands on precision of this parts pressure foundries to search for the new tools which can help them to improve the production. One of these tools is the numerical simulation of injection process, whereas such software especially for investment casting wax injection, process does not exist yet and for this case must be the existing software, for alloys or plastic, modified. This paper focuses on the use of numerical simulations to predict the behavior of injected models of gas turbine blades segments. The properties of wax mixtures, which were imported into the Cadmould simulation software as a material model, were found. The results of the simulations were verified using the results of 3D scanning measurements of wax models. As a supporting technology for verifying the results was used the Infrared Thermography.
Go to article

Abstract

The paper presents the method and results of low-frequency noise measurements of modern mid-wavelength infrared photodetectors. A type-II InAs/GaSb superlattice based detector with nBn barrier architecture is compared with a high operating temperature (HOT) heterojunction HgCdTe detector. All experiments were made in the range 1 Hz - 10 kHz at various temperatures by using a transimpedance detection system, which is examined in detail. The power spectral density of the nBn’s dark current noise includes Lorentzians with different time constants while the HgCdTe photodiode has more uniform 1/f - shaped spectra. For small bias, the low-frequency noise power spectra of both devices were found to scale linearly with bias voltage squared and were connected with the fluctuations of the leakage resistance. Leakage resistance noise defines the lower noise limit of a photodetector. Other dark current components give raise to the increase of low-frequency noise above this limit. For the same voltage biasing devices, the absolute noise power densities at 1 Hz in nBn are 1 to 2 orders of magnitude lower than in a MCT HgCdTe detector. In spite of this, low-frequency performance of the HgCdTe detector at ~ 230K is still better than that of InAs/GaSb superlattice nBn detector.
Go to article

This page uses 'cookies'. Learn more