Search results

Filters

  • Journals

Search results

Number of results: 12
items per page: 25 50 75
Sort by:

Abstract

The accumulation and translocation of trace metals in soil and in sugarcane crop irrigated with treated effluents from sugar industry compared to soil and sugarcane crop irrigated with bore-well water were determined. In the present study the impact of irrigation with treated effluent from the sugar industry on the trace metal contamination of sugarcane juice was assessed. It revealed that the mean concentrations of Cd, Pb, Cu, Mn and Zn in the soil of fields irrigated with effluent and in juice from sugarcane grown on such fields were higher than those from bore-well water irrigated fields. The concentrations of trace metals in treated effluent exceeded the permissible limits of the Indian standards (Central Pollution Control Board-2000). The concentrations of Cd, Pb, Cu and Zn in juice of sugarcane grown on fields irrigated with effluent also exceeded the permissible limits of Indian standards and WHO/FAO expert committee recommendations. Their concentrations in juice of sugarcane grown in fields irrigated with bore-well water were within the limits of safety, except for Cd. The transfer factor for Zn was considerably higher than those of the other trace metals. The metal concentrations of sugarcane juice showed significant correlations with those of soil, which was not the case when bore well water was used for irrigation.
Go to article

Abstract

Carbon dioxide sequestration and its long-term immobilisation in biomass is recently an extremely significant problem. Its greatest reserves occur in forests growing all over the globe. A human being, through their conscious action, ought to affect, among other things, the amount of carbon dioxide discharged into the atmosphere and its rational management. Here, quite a good solution seems to be the immobilisation of CO2 in biomass of plants, and in particular, in trees, characterised by their longevity, which are used most frequently for that purpose. Such carbon dioxide management allows for its several-decade immobilisation within living plants, while a further processing of wood mass allows for halting it for consecutive years in products manufactured. Additionally, in the case when within a selected land planted with trees the effluent irrigation is being carried out, simultaneous sewage treatment is also an advantage. By using plants characterised by intense increment in biomass within facilities, also biogens occurring in effluents may be effectively removed. In the analysed case, sewage treatment consisted in entry of household sewage into a prepared surface which was previously subject to mechanical purification. All the sections were sown with grass mixture and plantings of poplar were used. Observations were made during the period of 17 years. The effluents entered onto the surface of the sections and the effluents outflowing from the facility were subject to a physicochemical analysis in order to determine the operational efficiency of a plant - soil treatment system. Also, a threefold inventory of a forest stand was made in order to determine the increment in trees. The last inventory was made in 2014. Based on dendrological characteristics, the average volume of wood mass obtained from the land irrigated with effluents was assessed. A rational management of effluents on the grounds without any central drainage allows for a parallel solution to some problems. First of all, purification of effluents in a natural environment by closing the matter cycle, and additionally contributing to the limitation of carbon dioxide emission by its halting in plant biomass.
Go to article

Abstract

The purpose of this article is to present a new bell type water well construction with circulating treatment and its application. The construction of the water well has been developed and research has been conducted using physical and electrical modelling as well as in the practical field. Researches in this work are of analytical and experimental character. As the results of the research, optimal physical parameters of the constructions have been found and analytical  empirical formulae have been derived to calculate hydraulic parameters. Recommendation for application has been presented. The results received in this work can be used for the application of well construction. Further research is required to improve the physical and the hydraulic parameters of the proposed construction. The work has scientific and practical interest.
Go to article

This page uses 'cookies'. Learn more