Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

This paper presents the results of fractionation of particulate and soluble organic matter in a mixture of maize silage and cattle manure (49:51% volatile solids) that was used as a feedstock for anaerobic digestion. The extended Weender’s analysis was adapted to measure raw protein, raw lipids, fraction of carbohydrates (including starch, cellulose, hemicelluloses) and lignin. The content of individual fractions in composite, Xc (as kg COD kg-1 COD) was: 0.111 proteins, 0.048 lipids, 0.500 carbohydrates and 0.341 inerts. The biodegradability of Xc was 68%. Based on material balance, the carbon concentration in Xc was 0.0326 kmol C kg-1 COD, whereas nitrogen concentration 0.0018 kmol N kg-1 COD. The estimated pH of the feedstock based on acid-base equilibrium corresponded to the actual value (pH 7.14).
Go to article

Abstract

The aim of this study was to implement ADM1xp model to simulate behavior of anaerobic co-digestion of maize silage and cattle manure. The accuracy of ADM1xp has been assessed against experimental data of anaerobic digestion, performed at OLR = 2.1 gVS dm-3·d-1 and HRT = 45d. Due to the high number of parameters in ADM1xp, it was necessary to develop a customized procedure limiting the range of parameters to be estimated. The best fitting of experimental to simulated data was obtained after verification of 9 among 105 stoichiometric and kinetic parameters. The values of objective function (Jc) ranged between 0.003 (for valerate) and 211 (for biogas production).
Go to article

Abstract

The aim of this study was to investigate the influence of residual glycerine (5 and 10% w/w) from the biodiesel industry, used as a co-substrate, on biogas production from maize silage. The experiments were conducted in a laboratory-scale, single-stage anaerobic digester at 39ºC and hydraulic retention time (HRT) of 60 d. Addition of 5% residual glycerine caused organic load rate (OLR) to increase to 1.82 compared with 1.31 g organic dry matter (ODM) L-1d-1 for maize silage alone. The specific biogas production rate and biogas yield were 1.34 L L-1d-1 and 0.71 L g ODM-1 respectively, i.e. 86% and 30% higher than for maize alone. Increasing the residual glycerine content to 10% increased OLR (2.01 g ODM L-1d-1), but clearly decreased the specific biogas production rate and biogas yield to 0.50 L L-1d-1 and 0.13 L g ODM-1 respectively. This suggested that 10% glycerine content inhibited methanogenic bacteria and organics conversion into biogas. As a result, there was accumulation of propionic and valeric acids throughout the experiment.
Go to article

This page uses 'cookies'. Learn more