The paper presents the operation of two neuro-fuzzy systems of an adaptive type, intended for solving problems of the approximation of multi-variable functions in the domain of real numbers. Neuro-fuzzy systems being a combination of the methodology of artiﬁcial neural networks and fuzzy sets operate on the basis of a set of fuzzy rules “if-then”, generated by means of the self-organization of data grouping and the estimation of relations between fuzzy experiment results. The article includes a description of neuro-fuzzy systems by Takaga-Sugeno-Kang (TSK) and Wang-Mendel (WM), and in order to complement the problem in question, a hierarchical structural self-organizing method of teaching a fuzzy network. A multi-layer structure of the systems is a structure analogous to the structure of “classic” neural networks. In its ﬁnal part the article presents selected areas of application of neuro-fuzzy systems in the ﬁeld of geodesy and surveying engineering. Numerical examples showing how the systems work concerned: the approximation of functions of several variables to be used as algorithms in the Geographic Information Systems (the approximation of a terrain model), the transformation of coordinates, and the prediction of a time series. The accuracy characteristics of the results obtained have been taken into consideration.
Prior any satellite technology developments, the geodetic networks of a country were realized from a topocentric datum, and hence the respective cartography was performed. With availability of Global Navigation Satellite Systems-GNSS, cartography needs to be updated and referenced to a geocentric datum to be compatible with this technology. Cartography in Ecuador has been performed using the PSAD56 (Provisional South American Datum 1956) systems, nevertheless it’s necessary to have inside the system SIRGAS (SIstema de Referencia Geocéntrico para las AmericaS). This transformation between PSAD56 to SIRGAS use seven transformation parameters calculated with the method Helmert. These parameters, in case of Ecuador are compatible for scales of 1:25 000 or less, that does not satisfy the requirements on applications for major scales. In this study, the technique of neural networks is demonstrated as an alternative for improving the processing of UTM planes coordinates E, N (East, North) from PSAD56 to SIRGAS. Therefore, from the coordinates E, N, of the two systems, four transformation parameters were calculated (two of translation, one of rotation, and one scale difference) using the technique bidimensional transformation. Additionally, the same coordinates were used to training Multilayer Artificial Neural Network -MANN, in which the inputs are the coordinates E, N in PSAD56 and output are the coordinates E, N in SIRGAS. Both the two-dimensional transformation and ANN were used as control points to determine the differences between the mentioned methods. The results imply that, the coordinates transformation obtained with the artificial neural network multilayer trained have been improving the results that the bidimensional transformation, and compatible to scales 1:5000.
Noise control has gained a lot of attention recently. However, presence of nonlinearities in signal paths for some applications can cause significant difficulties in the operation of control algorithms. In particular, this problem is common in structural noise control, which uses a piezoelectric shunt circuit. Not only vibrating structures may exhibit nonlinear characteristics, but also piezoelectric actuators. In this paper, active device casing is addressed. The objective is to minimize the noise coming out of the casing, by controlling vibration of its walls. The shunt technology is applied. The proposed control algorithm is based on algorithms from a group of soft computing. It is verified by means of simulations using data acquired from a real object.
The article shows a new model of Continuous Cooling Transformation (CCT) diagrams of structural steels and engineering steels. The modelling used artificial neural networks and a set of experimental data prepared based on 550 CCT diagrams published in the literature. The model of CCT diagrams forms 17 artificial neural networks which solve classification and regression tasks. Neural model is implemented in a computer software that enables calculation of a CCT diagram based on chemical composition of steel and its austenitizing temperature.
The three-dimensional (3D) coordinate measurement of radio frequency identification (RFID) multi-tag networks is one of the important issues in the field of RFID, which affects the reading performance of RFID multi-tag networks. In this paper, a novel method for 3D coordinate measurement of RFID multitag networks is proposed. A dual-CCD system (vertical and horizontal cameras) is used to obtain images of RFID multi-tag networks from different angles. The iterative threshold segmentation and the morphological filtering method are used to process the images. The template matching method is respectively used to determine the two-dimensional (2D) coordinate and the vertical coordinate of each tag. After that, the 3D coordinate of each tag is obtained. Finally, a back-propagation (BP) neural network is used to model the nonlinear relationship between the RFID multi-tag network and the corresponding reading distance. The BP neural network can predict the reading distances of unknown tag groups and find out the optimal distribution structure of the tag groups corresponding to the maximum reading distance. In the future work, the corresponding in-depth research on the neural network to adjust the distribution of tags will be done.
Image registration is a key component of various image processing operations which involve the analysis of different image data sets. Automatic image registration domains have witnessed the application of many intelligent methodologies over the past decade; however inability to properly model object shape as well as contextual information had limited the attainable accuracy. In this paper, we propose a framework for accurate feature shape modeling and adaptive resampling using advanced techniques such as Vector Machines, Cellular Neural Network (CNN), SIFT, coreset, and Cellular Automata. CNN has found to be effective in improving feature matching as well as resampling stages of registration and complexity of the approach has been considerably reduced using corset optimization The salient features of this work are cellular neural network approach based SIFT feature point optimisation, adaptive resampling and intelligent object modelling. Developed methodology has been compared with contemporary methods using different statistical measures. Investigations over various satellite images revealed that considerable success was achieved with the approach. System has dynamically used spectral and spatial information for representing contextual knowledge using CNN-prolog approach. Methodology also illustrated to be effective in providing intelligent interpretation and adaptive resampling.
In order to enhance the acoustical performance of a traditional straight-path automobile muffler, a multi-chamber muffler having reverse paths is presented. Here, the muffler is composed of two internally parallel/extended tubes and one internally extended outlet. In addition, to prevent noise transmission from the muffler’s casing, the muffler’s shell is also lined with sound absorbing material. Because the geometry of an automotive muffler is complicated, using an analytic method to predict a muffler’s acoustical performance is difficult; therefore, COMSOL, a finite element analysis software, is adopted to estimate the automotive muffler’s sound transmission loss. However, optimizing the shape of a complicated muffler using an optimizer linked to the Finite Element Method (FEM) is time-consuming. Therefore, in order to facilitate the muffler’s optimization, a simplified mathematical model used as an objective function (or fitness function) during the optimization process is presented. Here, the objective function can be established by using Artificial Neural Networks (ANNs) in conjunction with the muffler’s design parameters and related TLs (simulated by FEM). With this, the muffler’s optimization can proceed by linking the objective function to an optimizer, a Genetic Algorithm (GA). Consequently, the discharged muffler which is optimally shaped will improve the automotive exhaust noise.
In this paper, the application of the Artificial Neural Network (ANN) algorithm has been used for testing selected specification parameters of voltage-controlled oscillator. Today, mixed electronic circuits specification time is an issue. An analog part of Phase Locked Loopis a voltage-controlled oscillator, which is very sensitive to variation of the technology process. Fault model for the integrated circuit voltage control oscillator (VCO) in ring topology is introduced and the before test stage classificatory is designed. In order to reduce testing time and keep the specification accuracy (approximation) on the high level, an artificial neural network has been applied. The features selection process and output coding for specification parameters are described. A number of different ANN have been designed and then compared with real specification of the VCO. The results obtained gives response in short time with high enough accuracy.
Reliable monitoring for detection of damage in epicyclic gearboxes is a serious concern for all industries in which these gearboxes operate in a harsh environment and in variable operational conditions. In this paper, autonomous multidimensional novelty detection algorithms are used to estimate the gearbox’ health state based on vectors of features calculated from the vibration signal. The authors examine various feature vectors, various sources of data and many different damage scenarios in order to compare novel detection algorithms based on three different principles of operation: a distance in the feature space, a probability distribution, and an ANN (artificial neural network)-based model reconstruction approach. In order to compensate for non-deterministic results of training of neural networks, which may lead to different network performance, the ensemble technique is used to combine responses from several networks. The methods are tested in a series of practical experiments involving implanting a damage in industrial epicyclic gearboxes, and acquisition of data at variable speed conditions.
The void fraction is one of the most important parameters characterizing a multiphase flow. The prediction of the performance of any system operating with more than single phase relies on our knowledge and ability to measure the void fraction. In this work, a validated simulation study was performed in order to predict the void fraction independent of the flow pattern in gas-liquid two-phase flows using a gamma ray 60Co source and just one scintillation detector with the help of an artificial neural network (ANN) model of radial basis function (RBF). Three used inputs of ANN include a registered count under Compton continuum and counts under full energy peaks of 1173 and 1333 keV. The output is a void fraction percentage. Applying this methodology, the percentage of void fraction independent of the flow pattern of a gas-liquid two-phase flow was estimated with a mean relative error less than 1.17%. Although the error obtained in this study is almost close to those obtained in other similar works, only one detector was used, while in the previous studies at least two detectors were employed. Advantages of using fewer detectors are: cost reduction and system simplification.
Most researchers have explored noise reduction effects based on the transfer matrix method and the boundary element method. However, maximum noise reduction of a plenum within a constrained space, which frequently occurs in engineering problems, has been neglected. Therefore, the optimum design of multi-chamber plenums becomes essential. In this paper, two kinds of multi-chamber plenums (Case I: a two-chamber plenum that is partitioned with a centre-opening baffle; Case II: a three-chamber plenum that is partitioned with two centre-opening baffles) within a fixed space are assessed. In order to speed up the assessment of optimal plenums hybridized with multiple partitioned baffles, a simplified objective function (OBJ) is established by linking the boundary element model (BEM, developed using SYSNOISE) with a polynomial neural network fit with a series of real data – input design data (baffle dimensions) and output data approximated by BEM data in advance. To assess optimal plenums, a genetic algorithm (GA) is applied. The results reveal that the maximum value of the transmission loss (TL) can be improved at the desired frequencies. Consequently, the algorithm proposed in this study can provide an efficient way to develop optimal multi-chamber plenums for industry.
In the paper the use of the artificial neural network to the control of the work of heat treating equipment for the long axisymmetric steel elements with variable diameters is presented. It is assumed that the velocity of the heat source is modified in the process and is in real time updated according to the current diameter. The measurement of the diameter is performed at a constant distance from the heat source (∆z = 0). The main task of the model is control the assumed values of temperature at constant parameters of the heat source such as radius and power. Therefore the parameter of the process controlled by the artificial neural network is the velocity of the heat source. The input data of the network are the values of temperature and the radius of the heated element. The learning, testing and validation sets were determined by using the equation of steady heat transfer process with a convective term. To verify the possibilities of the presented algorithm, based on the solve of the unsteady heat conduction with finite element method, a numerical simulation is performed. The calculations confirm the effectiveness of use of the presented solution, in order to obtain for example the constant depth of the heat affected zone for the geometrically variable hardened axisymmetric objects.