Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The object of the present study is to investigate the influence of damping uncertainty and statistical correlation on the dynamic response of structures with random damping parameters in the neighbourhood of a resonant frequency. A Non-Linear Statistical model (NLSM) is successfully demonstrated to predict the probabilistic response of an industrial building structure with correlated random damping. A practical computational technique to generate first and second-order sensitivity derivatives is presented and the validity of the predicted statistical moments is checked by traditional Monte Carlo simulation. Simulation results show the effectiveness of the NLSM to estimate uncertainty propagation in structural dynamics. In addition, it is demonstrated that the uncertainty in damping indeed influences the system response with the effects being more pronounced for lightly damped structures, higher variability and higher statistical correlation of damping parameters.
Go to article

Abstract

Source/filter models have frequently been used to model sound production of the vocal apparatus and musical instruments. Beginning in 1968, in an effort to measure the transfer function (i.e., transmission response or filter characteristic) of a trombone while being played by expert musicians, sound pressure signals from the mouthpiece and the trombone bell output were recorded in an anechoic room and then subjected to harmonic spectrum analysis. Output/input ratios of the signals’ harmonic amplitudes plotted vs. harmonic frequency then became points on the trombone’s transfer function. The first such recordings were made on analog 1/4 inch stereo magnetic tape. In 2000 digital recordings of trombone mouthpiece and anechoic output signals were made that provide a more accurate measurement of the trombone filter characteristic. Results show that the filter is a high-pass type with a cutoff frequency around 1000 Hz. Whereas the characteristic below cutoff is quite stable, above cutoff it is extremely variable, depending on level. In addition, measurements made using a swept-sine-wave system in 1972 verified the high-pass behavior, but they also showed a series of resonances whose minima correspond to the harmonic frequencies which occur under performance conditions. For frequencies below cutoff the two types of measurements corresponded well, but above cutoff there was a considerable difference. The general effect is that output harmonics above cutoff are greater than would be expected from linear filter theory, and this effect becomes stronger as input pressure increases. In the 1990s and early 2000s this nonlinear effect was verified by theory and measurements which showed that nonlinear propagation takes place in the trombone, causing a wave steepening effect at high amplitudes, thus increasing the relative strengths of the upper harmonics.
Go to article

Abstract

The distribution of perturbations of pressure and velocity in a rectangular resonator is considered. A resonator contains a gas where thermodynamic processes take place, such as exothermic chemical reaction or excitation of vibrational degrees of a molecule’s freedom. These processes make the gas acoustically active under some conditions. We conclude that the incident and reflected compounds of a sound beam do not interact in the leading order in the case of the periodic sound with zero mean pressure including waveforms with discontinuities. The acoustic field before and after forming of discontinuities is described. The acoustic heating or cooling in a resonator is discussed.
Go to article

This page uses 'cookies'. Learn more