Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:

Abstract

The objective of this paper is to present a probabilistic method of analyzing the combinations of snow and wind loads using meteorological data and to determine their combination factors. Calculations are based on data measured at twelve Polish meteorological stations operated by the Institute for Meteorology and Water Management. Data provided are from the years 1966 - 2010. Five combinations of snow load and 10-minute mean wind velocity pressure have been considered. Gumbel probability distribution has been used to fit the empirical distributions of the data. As a result, the interdependence between wind velocity pressure and snow load on the ground for a return period of 50 years has been provided, and the values of the combination factors for snow loads and wind actions are proposed.
Go to article

Abstract

In the paper, the results of investigations on the properties of acoustic emission signals generated in a tested pressure vessel are presented. The investigations were performed by repeating several times the following procedure: an increase in pressure, maintaining a given pressure level, a further increase in pressure, and then maintaining the pressure at new determined level. During the tests the acoustic emission signals were recorded by the measuring system 8AE-PD with piezoelectric sensors D9241A. The used eight-channel measuring system 8AE-PD enables the monitoring, recording and then basic and advanced analysis of signals. The results of basic analysis carried out in domain of time and the results of advanced analysis carried out in the discrimination threshold domain of the recorded acoustic emission signals are presented in the paper. In the framework of the advanced analysis, results are described by the defined by the author descriptors with acronyms ADC, ADP and ADNC. Such description is based on identifying the properties of amplitude distributions of acoustic emission signals by assigning them the level of advancement. It is shown that for signals including continoues AE or single burst AE signals descriptions of such registered signals by means of ADC, ADP and ADNC descriptors and by Upp and Urms descriptors provide identical ordering of registered acoustic emission signals. For complex signals, the description using ADC, ADP and ADNC descriptors based on the analysis of amplitude distributions of recorded signals gives the order of signals with more accurate connection with deformational processes being sources of acoustic emission signals.
Go to article

Abstract

The flow of a viscous incompressible fluid in small gaps hydraulic devices and devices based on the hop boundary changes in viscosity. For the distribution model adopted dynamic viscosity was integrate the equations of fluid motion, whereby expressions are obtained for the velocity of the liquid height of the gap. The expressions for calculation of the fall capacity flow section are determined. Examples of the calculation of distributions velocity and falling bandwidth to a narrow gap are given.The estimation of the limits of applicability of classical approach to the calculation of viscous flow in micro gap is executed.
Go to article

Abstract

Acoustic radiation sources are successfully applied to cleaning rooms from dust of fairly large particle sizes (ten micrometers and larger). The sedimentation of fine aerosols (particle diameter of 1-10 microns) is a more complicated challenge. The paper is devoted to the substantiation of the acoustic sedimentation method for such aerosols. On the basis of the mathematical model analysis for aerosol sedimentation by the acoustic field the mechanisms of this process have been determined and include the particle coagulation acceleration and radiation pressure effect. The experimental results of the acoustic sedimentation of a model aerosol (NaCl) are shown. The calculation results according to the mathematical model for coagulation and sedimentation, on the basis of the Smolukhovsky’s equation taking into account various mechanisms of aerosol sedimentation by sound depending on the particle sizes and sound intensity, are given. The necessity to use intensive sources of high-frequency sound has been confirmed, suggesting that these sources must be located above dust clouds.
Go to article

Abstract

The authors describe the program undertaken at the Warsaw University of Technology (WUT), aimed at developing mobile aerodynamic laboratories to be used for investigation into aerodynamic properties of airfoils or lightweight propulsion systems - in natural scale and in natural atmosphere. The enterprise was named the EB-program, and has both: research and educational aspects; in all phases of the program (i.e. design, manufacturing and testing) the WUT students are involved. As the result of work, three mobile aerodynamic laboratories were build: EB-1 - which was tested on the car roof, EB-2 - unique flying laboratory based on the PW-6 glider, and EB-3 - a new generation of flying wind tunnel to be used on the AOS-71 glider, which currently is under preparation to the flight tests. The authors present in detail the measurement systems and procedures supported by the Lab View software.
Go to article

Abstract

An alternative FEM algorithm of fi nding piston ring pressure distribution to a contact simulation is introduced. The method is basing on an analytical determining of required nodal displacement boundary conditions. Its several confi gurations are tested using APDL and compared to a no-separation contact simulation of a simple 2D fi nite element model of a two-stroke piston ring made of Titanium alloy. Each of the methods tested in the paper brings displacement result and Huber-Misses equivalent stresses close to each other. However, only one of those brings resulting contact pressure close to a no-separation contact simulation. Nonetheless, the obtained confi guration occurred to be less computationally effi cient than no- separation contact simulation performed in an ANSYS software.
Go to article

This page uses 'cookies'. Learn more