Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 15
items per page: 25 50 75
Sort by:

Abstract

The research paper presents the results of the dynamic analysis of an existing bar dome subjected to wind loads. The calculation model of the structure was constructed using the finite element method. The dome was subjected to the standard wind pressure, assuming that it is operates in a harmonic manner. The numerical analyses were performed with the application of Autodesk Robot and MES3D. The analysis focused on the impact of selected factors such as the frequency of forcing, wind gustiness coefficient and structural damping on the behaviour of structures.
Go to article

Abstract

The aim of this publication is to design a procedure for the synthesis of an IDT (interdigital transducer) with diluted electrodes. The paper deals with the surface acoustic waves (SAW) and the theory of synthesis of the asymmetrical delay line with the interdigital transducer with diluted electrodes. The authors developed a theory, design, and implementation of the proposed design. They also measured signals. The authors analysed acoustoelectronic components with SAW: PLF 13, PLR 40, delay line with PAV 44 PLO. The presented applications have a potential practical use.
Go to article

Abstract

The locally resonant sonic material (LRSM) is an artificial metamaterial that can block underwater sound. The low-frequency insulation performance of LRSM can be enhanced by coupling local resonance and Bragg scattering effects. However, such method is hard to be experimentally proven as the best optimizing method. Hence, this paper proposes a statistical optimization method, which first finds a group of optimal solutions of an object function by utilizing genetic algorithm multiple times, and then analyzes the distribution of the fitness and the Euclidean distance of the obtained solutions, in order to verify whether the result is the global optimum. By using this method, we obtain the global optimal solution of the low-frequency insulation of LRSM. By varying parameters of the optimum, it can be found that the optimized insulation performance of the LRSM is contributed by the coupling of local resonance with Bragg scattering effect, as well as a distinct impedance mismatch between the matrix of LRSM and the surrounding water. This indicates coupling different effects with impedance mismatches is the best method to enhance the low-frequency insulation performance of LRSM.
Go to article

Abstract

In order to improve the efficiency and ensure the security of power supply used in a mine, this paper mainly studies the quasi-resonant flyback secondary power supply and analyzes its operational principles based on the requirements of soft-switching technology. In accordance with the maximum energy of a short-circuit and the request of maximum output voltage ripple, this paper calculates the spectrum value of the output filter capacitor and provides its design and procedures to determine the parameters of the main circuit of power supply. The correctness and availability of this theory are eventually validated by experiments.
Go to article

Abstract

B a c k g ro u n d: Arterial hypertension (HTN) ranks among the most widespread chronic illnesses that affect adults in industrialized societies. The main goal of this study was to describe the control (inhibition) processes among HTN patients, and to evaluate the dynamics of brain activity while the patients were engaged in tasks measuring the cognitive aspect of self-control. P a r t i c i p a n t s a n d p ro c e d u re: A set of neuropsychological tests (California Verbal Learning Test, Color Trails Test, The Trail Making Test, Controlled Oral Word Association Test), and a fMRI Stroop test (rapid event design) were administered to 40 persons (20 HTN patients and 20 controls). Groups were matched in terms of age, sex, education, smoking history, and waist-to-hip ratio. R e s u l t s: As revealed by fMRI, the HTN patients demonstrate left-hemisphere asymmetry in inhibitory processes. Also around 90% of patients had problems when completing tasks which rely on verbal and graphomotor aspects of self-control. C o n c l u s i o n s: The results suggest that both cerebral hemispheres must interact correctly in order to provide successful executive control. The deficiencies in control and executive functioning, which were observed among the patients, prove that HTN negatively affects brain processes that control one’s cognitive activity.
Go to article

Abstract

Air core solenoids, possibly single layer and with significant spacing between turns, are often used to ensure low stray capacitance, as they are used as part of many sensors and instruments. The problem of the correct estimation of the stray capacitance is relevant both during design and to validate measurement results; the expected value is so low to be influenced by any stray capacitance of the external measurement instrument. A simplified method is proposed that does not perturb the stray capacitance of the solenoid under test; the method is based on resonance with an external capacitor and on the use of a linear regression technique.
Go to article

Abstract

This paper presents the results of studies on functional possibilities of the optimization of geometric sizes and the design development of specialized resonance concentrating link (concentrator-sonotrode) with enlarged radiating surface. Developed theoretical model allows to determine the value of longitudinal and transverse sizes of each part of concentrating link providing the achievement of required features of the ultrasonic vibrating systems (gain factor of the unit and its resonance frequency). To verify the efficiency of designed model, the geometric sizes of resonance concentrating link were determined using the finite-element complex, which showed that the disagreement did not exceed 10%. The efficiency of proposed model at the determining of size and resonance characteristics of concentrating link was proved by the experiments. Theoretical and experimental studies helped to optimize the size of concentrating link while the vi- brating system developed on its base enabled the enlargement of radiating surface without decreasing the radiation intensity for the realization of technologies of cavitation treatment of liquid media
Go to article

Abstract

This paper presents a novel complementary CPWfed slotted microstrip patch antenna for operation at 2.4 GHz, 5.2 GHz and 6.3 GHz frequencies. The primary structure consists of the complementary split ring resonator slots on a patch and the design is fabricated on FR-4 epoxy substrate with substrate thickness of 1.6 mm. The described structure lacks the presence of a ground plane and makes use of a number of circular complementary SRRs along with rectangular slots on the radiating patch. The structure provides a wide bandwidth of around 390 MHz, 470 MHz and 600 MHz at the three bands with return losses of -11.5 dB, -24.3996dB and -24.4226 dB, respectively. The inclusion of the rectangular slots in the CSRR based slot antenna with stairecase structure improved the performance with respect to return loss.
Go to article

Abstract

The parametric anti-resonance phenomenon as an active damping tool for suppression of externally excited resonant vibration is numerically studied herein. It is well known fact that the anti-resonance phenomenon, i.e. the stiffness periodic variation by subtractive, combination resonance frequency, brings stabilization and cancelling into self-excited vibrations. But this paper aims at a new possibility of its application, namely a damping of externally excited resonant vibration. For estimation of its effect we come both from a characteristic exponent of the analytical solution and numerical solution of forced vibration of 2DOF linear system with additional parametric excitation. The amplitude suppression owing to the parametric anti-resonance is studied on several parameters of the system: a depth of parametric excitation, mass ratio, damping coefficient and small frequency deviations from the parametric anti-resonance.
Go to article

Abstract

Excitation of the entropy mode in the field of intense sound, that is, acoustic heating, is theoretically considered in this work. The dynamic equation for an excess density which specifies the entropy mode, has been obtained by means of the method of projections. It takes the form of the diffusion equation with an acoustic driving force which is quadratically nonlinear in the leading order. The diffusion coefficient is proportional to the thermal conduction, and the acoustic force is proportional to the total attenuation. Theoretical description of instantaneous heating allows to take into account aperiodic and impulsive sounds. Acoustic heating in a half-space and in a planar resonator is discussed. The aim of this study is to evaluate acoustic heating and determine the contribution of thermal conduction and mechanical viscosity in different boundary problems. The conclusions are drawn for the Dirichlet and Neumann boundary conditions. The instantaneous dynamic equation for variations in temperature, which specifies the entropy mode, is solved analytically for some types of acoustic exciters. The results show variation in temperature as a function of time and distance from the boundary for different boundary conditions.
Go to article

Abstract

Acoustic properties of ultrasound (US) contrast agent microbubbles (MB) highly influence sonoporation efficiency and intracellular drug and gene delivery. In this study we propose an acoustic method to monitor passive and excited MBs in a real time. MB monitoring system consisted of two separate transducers. The first transducer delivered over an interval of 1 s US pulses (1 MHz, 1% duty cycle, 100 Hz repetition frequency) with stepwise increased peak negative pressure (PNP), while the second one continuously monitored acoustic response of SonoVue MBs. Pulse echo signals were processed according to the substitution method to calculate attenuation coefficient spectra and loss of amplitude. During US exposure at 50–100 kPa PNP we observed a temporal increase in loss of amplitude which coincided with the US delivery. Transient increase in loss of amplitude vanished at higher PNP values. At higher PNP values loss of amplitude decreased during the US exposure indicating MB sonodestruction. Analysis of transient attenuation spectra revealed that attenuation coefficient was maximal at 1.5 MHz frequency which is consistent with resonance frequency of SonoVue MB. The method allows evaluation of the of resonance frequency of MB, onset and kinetics of MB sonodestruction.
Go to article

Abstract

The paper presents an analysis of the results of ultrasound transmission tomography (UTT) imaging of the internal structure of a breast elastography phantom used for biopsy training, and compares them with the results of CT, MRI and, conventional US imaging; the results of the phantom examination were the basis for the analysis of UTT method resolution. The obtained UTT, CT and MRI images of the CIRS Model 059 breast phantom structure show comparable (in the context of size and location) heterogeneities inside it. The UTT image of distribution of the ultrasound velocity clearly demonstrates continuous changes of density. The UTT image of derivative of attenuation coefficient in relation to frequency is better for visualising sharp edges, and the UTT image of the distribution of attenuation coefficient visualises continuous and stepped changes in an indirect way. The inclusions visualized by CT have sharply delineated edges but are hardly distinguishable from the phantom gel background even with increased image contrast. MRI images of the studied phantom relatively clearly show inclusions in the structure. Ultrasonography images do not show any diversification of the structure of the phantom. The obtained examination results indicate that, if the scanning process is accelerated, ultrasound transmission tomography method can be successfully used to detect and diagnose early breast malignant lesions. Ultrasonic transmission tomography imaging can be applied in medicine for diagnostic examination of women’s breasts and similarly for X-ray computed tomography, while eliminating the need to expose patients to the harmful ionising radiation.
Go to article

Abstract

The sompoton is one of famous traditional musical instruments in Sabah. This instrument consists of several parts with the vibrator being the most important one. In this paper, the vibrator is modeled as a clamped bar with a uniformly distributed mass. By means of this model, the fundamental frequency is analyzed with the use of an equivalent single degree of freedom system (SDOF) and exact analysis. The vibrator is made of aluminum in different sizes and is excited using a constant air jet to obtain its fundamental resonance frequency. The fundamental frequency obtained from the experimental measurement is compared with the theoretical values calculated based on the equivalent SDOF and exact analysis theories. It is found that the exact analysis gives a closer value to the experimental results as compared to the SDOF system. Although both the experimental and theoretical results exhibit the same trend, they are different in magnitude. To overcome the differences in both theories, a correction factor is added to account for the production errors.
Go to article

Abstract

The paper presents an analysis of factors influencing the accuracy of reproduction of geometry of the vertebrae and the intervertebral disc of the lumbar motion segment for the purpose of designing of an intervertebral disc endoprosthesis. In order to increase the functionality of the new type of endoprostheses by a better adjustment of their structure to the patient’s anatomical features, specialist software was used allowing the processing of the projections of the diagnosed structures. Recommended minimum values of projection features were determined in order to ensure an effective processing of the scanned structures as well as other factors affecting the quality of the reproduction of 3D model geometries. Also, there were generated 3D models of the L4-L5 section. For the final development of geometric models for disc and vertebrae L4 and L5 there has been used smoothing procedure by cubic free curves with the NURBS technique. This allows accurate reproduction of the geometry for the purposes of identification of a spatial shape of the surface of the vertebrae and the vertebral disc and use of the model for designing of a new endoprosthesis, as well as conducting strength tests with the use of finite elements method.
Go to article

Abstract

The paper presents application of Taguchi method in optimizing the sound transmission loss through sandwich gypsum constructions and those comprising of masonry concrete blocks and gypsum boards in order to investigate the relative influence of the various parameters affecting the sound transmission loss. The application of Taguchi method for optimizing sound transmission loss has been rarely reported. The present work uses the results analytically predicted on “Insul” software for various sandwich material configurations as desired by each experimental run in an L8 orthogonal array. The relative importance of the parameters on single-number rating, Rw (C, Ctr) is evaluated in terms of percentage contribution using Analysis of Variance (ANOVA). The ANOVA method reveals that type of studs, steel stud frame and number of gypsum layers attached are the key factors controlling the sound transmission loss characteristics of sandwich multi-layered constructions.
Go to article

This page uses 'cookies'. Learn more