Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 6
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Endopolyploidy is a condition of a cell containing reduplicated genetic material in its nucleus. Cells with the nuclei of different ploidy levels are often present within a single polysomatic organism. Endoreduplication is thus a modified cell cycle that omits cytokinesis and leads to chromatin replication in the endopolyploid cells. This study aimed to research the effect of salinity on endopolyploidy of Trifolium pratense and T. repens. Both species are important pasture legumes and belong to the genus Fabaceae with the well documented endopolyploidy occurence. Endopolyploidy levels in the seedlings treated with 0, 30, 60, 90 and 120 mM NaCl were investigated by flow cytometry. The seedling organs were evaluated during three ontogeny stages. The cytometric data plotted on a histogram showed the presence of 2C-16C nuclei in T. pratense and 2C-8C in T. repens. The hypothesis that salinity induces additional endocycles was not confirmed. Our results show that the distribution of nuclei among ploidy levels does not differ markedly between the treatment groups and the control ones. Additionally, only minor changes were observed among the endoreduplication indexes (EI) of plant organs after exposure to various salt concentrations. Endopolyploidy patterns within the salt-treated seedlings during ontogeny are similar to the controls. We suggest that endopolyploidy in Trifolium species is a conserved genetic trait, rather than an adaptation to salinity stress. The analyses of the roots of T'. pratense at stage III show that with the increased concentrations of NaCl the length of roots decreased, but no evident changes in endopolyploidy occured.
Przejdź do artykułu

Abstrakt

SDS-PAGE electrophoresis was used to study the effect of NaCl on protein expression in two cultivars of tomato (Solanum lycopersicum L.): Edkawi (salt-tolerant) and Castle rock (salt-sensitive). Five-day-old seedlings were grown on MS agar media supplemented with 0, 50, 100, 150, 200 and 300 mM NaCl. Two days after treatment the seedlings were examined to determine the effect of salt on their growth and to relate that to protein banding variations. Gel analysis showed differences in at least 4 protein bands with molecular weights at 20, 25, 45 and 65 kDa. These proteins were induced in the 50 mM NaCl treatment in the salt-sensitive cultivar, then decreasing to undetectability at higher concentrations. In the salt-tolerant cultivar, most of the proteins exhibited a more or less steady expression pattern and maintained expression through the 200 mM NaCl treatment. All proteins gave weak or no expression signals at 300 mM NaCl, the treatment that proved lethal. Differentially expressed bands were identified using MALDI-TOF mass spectrometry. The putative function of each identified protein in relation to salt stress is discussed.
Przejdź do artykułu

Abstrakt

A number of technologies is developed that substitute simple metal cores in the high-pressure casting technology. Soluble cores, namely on the salt basis, represent the highest prospect. The contribution gives the results of the production of salt cores by high-pressure squeezing and shooting with using a binder. Special attention is paid to the shape of NaCl salt crystals with additives and the influence on strength properties of cores. A technology of bonding the salt cores is developing. Salinity of circulating water is studied and it is checked with the aid of electrical conductance.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji