Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The performance of the multi-input multi-output (MIMO) systems can be improved by spatial modulation. By using spatial modulation, the transmitter can select the best transmit antenna based on the channel variations using channel state information (CSI). Also, the modulation helps the transmitter to select the best modulation level such that the system has the best performance in all situations. Hence, in this paper, two issues are considered including spatial modulation and information modulation selection. For the spatial modulation, an optimal solution for obtaining the probability of selecting antenna is calculated and then Huffman coding is used such that the transmitter can select the best transmit antenna to maximize the channel capacity. For the information modulation, a multi quadrature amplitude modulation (MQAM) strategy is used. In this modulation, the modulation size is changed based on the channel state variations; therefore, the best modu- lation index is used for transmitting data in all channel situations. In simulation results, the optimal method is compared with Huffman mapping. In addition, the effect of modulation on channel capacity and a bit error rate (BER) is shown.
Go to article

Abstract

Spatial light modulators (SLM) are devices used to modulate amplitude, phase or polarization of a light wave in space and time. Current SLMs are based either on MEMS (micro-electro-mechanical system) or LCD (liquid crystal display) technology. Here we report on the parameters, trends in development and applications of phase SLMs based on liquid crystal on silicon (LCoS) technology. LCoS technology was developed for front and rear projection systems competing with AMLCD (active matrix LCD) and DMD (Digital Mirror Device) SLM. The reflective arrangement due to silicon backplane allows to put a high number of pixels in a small panel, keeping the fill-factor ratio high even for micron-sized pixels. For coherent photonics applications the most important type of LCoS SLM is a phase modulator. In the paper at first we describe the typical parameters of this device and the methods for its calibration. Later we present a review of applications of phase LCoS SLMs in imaging, metrology and beam manipulation, developed by the authors as well as known from the literature. These include active and adaptive interferometers, a smart holographic camera and holographic display, microscopy modified in illuminating and imaging paths and active sensors.
Go to article

This page uses 'cookies'. Learn more