Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The Open Skies Treaty has been a peace-building instrument between North American and European nations for over two decades. This agreement is based on the possibility for each country-signatory of the Treaty to independently conduct observation flights and obtain aerial imagery data of the territories of other Treaty States-Parties. This imagery data was originally acquired only using traditional photographic film cameras. Together with the rapid development and advancement of digital sensor technologies, the logical step forward was to amend the Treaty provisions to allow for the use of these types of sensors during observation missions. This paper describes this transition process and highlights a number of technical problems which needed to be addressed by experts working within the Open Skies Consultative Commission workgroups.
Go to article

Abstract

Breast cancer screening is based on X-ray mammography, while ultrasound is considered a complementary technique with improved detection in dense tissue. However, breast cancer screening requires a technique that provides repeatable results at the inspection interval which cannot be achieved with manual breast exploration. During the last years there have appeared several approaches to overcome this limitation by means of automated ultrasonic tomography performed with motorized probes or with a large set of array transducers. This work addresses these problems by considering a quite simple and low-cost arrangement, formed with a ring of conventional medical-grade array probes which are multiplexed to the electronics to build Full Angle Spatially Compounded (FASC) images. The work analyzes the performance of such arrangement in terms of resolution and isotropy, showing by numerical modelling and experimentally that it provides high resolution and homogeneity in the whole imaged region. The implementation of this technique would provide more than one circular FASC per second and a whole breast volume image in 1–2 minutes with conventional technology, a process fast enough to be clinically useful. Moreover, the automated technique is repeatable and can be used by the clinician to perform immediately the diagnosis without requiring additional data processing.
Go to article

This page uses 'cookies'. Learn more