Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The aim of the presented investigations was to examine changes in the intensity of dehydrogenase and acid phosphatase activities as well as of the dynamics of selected groups of microorganisms in the soil under the cultivation of winter triticale following the application of the following seed dressings: (a.s.) flutriafol 2.5% + fludioxonil 2.5% in two doses and (a.s.) carboxin and tiuram. The experiment had a field character. The number of microorganisms (total bacteria, fungi, oligotrophic, copiotrophic and Azotobacter) was determined by the plate method on adequate agar substrates. Activity levels of the selected enzymes were defined using the spectrometrical method. The obtained results indicate a change in the dehydrogenase and phoshatase activity in soil depending on the seed dressing applied in the experiment as well as at the date of investigations. The number of microorganisms in the soil underwent fluctuations depending on the developmental stage of triticale and the applied fungicide. The performed experiment demonstrated that counts of microorganisms in the soil underwent fluctuations depending on the developmental stage of triticale and the applied fungicide.
Go to article

Abstract

In this study, we examined whether and to what extent oxidative stress is induced in seedlings of two winter triticale (Triticosecale Wittm.) varieties (susceptible Tornado and resistant Witon) in response to infestation by the cereal grain aphid (Sitobion avenae L.) and bird-cherry-oat aphid (Rhopalosiphum padi L.). We compared the level of hydrogen peroxide (H2O2) and lipid peroxidation products as well as markers of protein damage (protein-bound thiol and carbonyl groups). The studied parameters were measured at 6, 24, 48 and 96 h post-initial aphid infestation compared to the non-infested control seedlings. Our studies indicated that the cereal aphid feeding evoked oxidative stress in the triticale seedlings. Cereal aphid feeding increased the H2O2 level in triticale tissues, with maximum levels observed at 24 and 48 h post-infestation. Triticale infestation with aphids also increased lipid peroxidation products in triticale seedlings, with the maximal levels at 48 or 96 h post-infestation. Further, there was a reduction in protein thiol content and an increase in protein carbonyl content in the triticale seedlings after infestation with female aphids. Stronger triticale macromolecule damages were evoked by the oligophagous aphid R. padi. There was a more substantial protein thiol content reduction in the resistant Witon cultivar and higher accumulation of protein-bound carbonyls in the tissues of the susceptible Tornado cultivar. The changes were proportional to the aphid population and the time of aphid attack. These findings indicate that the defensive strategies against cereal aphid (S. avenae and R. padi) infestation were stimulated in triticale Tornado and Witon seedlings. Our results explain some aspects and broaden the current knowledge of regulatory mechanisms in plant-aphid interactions.
Go to article

Abstract

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important foliar diseases of cereals. Infection by this pathogen on triticale has intensified in Poland in the last few years. In this study we examined resistance to powdery mildew in triticale hybrids possessing resistance genes Pm4b and Pm6 introduced from common wheat. The materials tested were hybrids derived from triticale crosses with common wheat cultivars carrying the desired resistance genes. The presence of the transferred genes was reflected in increased field resistance and shown by the use of molecular markers. The paper discusses the potential introduction of the genes to improve powdery mildew resistance.
Go to article

This page uses 'cookies'. Learn more