Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 20
items per page: 25 50 75
Sort by:

Abstract

The article describes the method of controlling the recovered grade based on measuring the intensity of volume ultrasonic oscillations and Lamb waves covering a fixed distance through the test medium and on a metal plate contacting the test medium at various time points of deliberate motion of ground materials. The authors suggest a method of determining density of ground ore particles in the pulp periodically after isolating the pulp flow in the vertical part of the measuring vessel based on measuring attenuation change values in Lamb waves covering a fixed distance on a plate contacting the medium under study and high frequency volume ultrasonic oscillations that have come through it within a certain time period. There are given dependencies of amplitudes of measuring channels based on volume ultrasonic oscillations and surface Lamb waves, size distribution according to solid phase pulp particles for various types of ores under study, a set of curves for determining the recovered grade with regard to various types of ores under study.
Go to article

Abstract

The issue of maximizing penetration depth with concurrent retaining or enhancement of image resolution constitutes one of the time invariant challenges in ultrasound imaging. Concerns about potential and undesirable side effects set limits on the possibility of overcoming the frequency dependent attenuation effects by increasing peak acoustic amplitudes of the waves probing the tissue. To overcome this limitation a pulse compression technique employing 16 bits Complementary Golay Sequences (CGS) Code was implemented at 4 MHz. In comparison with other, earlier proposed, coded excitation schemes, such as chirp, pseudo-random chirp and Barker codes, the CGS allowed virtually side lobe free operation. Experimental data indicate that the quality — resolution, signal penetration and contrast dynamics — of CGS images is better than the one obtain for standard ultrasonography using short burst excitation.
Go to article

Abstract

To design breast ultrasound scanning systems or to test new imaging methods, various computer models are used to simulate the acoustic wave field propagation through a breast. The computer models vary in complexity depending on the applied approximations. The objective of this paper is to investigate how the applied approximations affect the resulting wave field. In particular, we investigate the importance of taking three-dimensional (3-D) spatial variations in the compressibility, volume density of mass, and attenuation into account. In addition, we compare four 3-D solution methods: a full-wave method, a Born approximation method, a parabolic approximation method, and a ray-based method. Results show that, for frequencies below 1 MHz, the amplitude of the fields scattering off the compressibility or density contrasts are at least 24 dB higher than the amplitude of the fields scattering off the attenuation contrasts. The results also show that considering only speed of sound as a contrast is a valid approximation. In addition, it is shown that the pressure field modeled with the full-wave method is more accurate than the fields modeled using the other three methods. Finally, the accuracy of the full-wave method is location independent whereas the accuracy of the other methods strongly depends on the point of observation.
Go to article

Abstract

In modern times, there are increasing requirements for products quality in every part of manufacturing industry and in foundry industry it is not different. That is why a lot of foundries are researching, how to effectively produce castings with high quality. This article is dealing with search of the influence of using different types of risers or chills on shrinkage cavity production in ductile iron castings. Differently shaped risers were designed using the Wlodawer´s modulus method and test castings were poured with and without combination of chills. Efficiency of used risers and chills was established by the area of created shrinkage cavity using the ultrasound nondestructive method. There are introduced the production process of test castings and results of ultrasound nondestructive reflective method. The object of this work is to determine an optimal type of riser or chill for given test casting in order to not use overrated risers and thus increase the cost effectiveness of the ductile iron castings production.
Go to article

Abstract

The paper presents the investigations aimed at the determination of the effect of time and wavelength of ultrasound field on the value of capillary suction time (CST), sludge thickening and dry matter of the excess sludge subjected to the process of stabilization. The investigations were carried out on the excess sludge which comes from communal waste treatment plant. The sludge was exposed to ultrasound field, using ultrasound generator with power of 1500 W, frequency of 20 kHz and amplitude 39.42 μm (which corresponded to the amplitude of 100%). Sonication of the sludge was carried out for different amplitudes and sonication times. The non-conditioned sludge and the sludge initially conditioned with ultrasound field were subjected to the process of stabilization in laboratory flasks (V = 0.5 dm3) for the period of 10 days. On each day, sludge thickening and dewatering capacities were determined. The sludge subjected to the effect of ultrasound field exhibited elevated levels of CST. However, the sonication time had positive effect on the increase in the degree of thickening for each of the amplitudes studied. Also, the process of stabilization positively affected final thickening and dewatering of the sludge.
Go to article

Abstract

Despite the consensus on the role of lung and pleura ultrasound in human medicine, veteri- nary medicine questions credibility of the pulmonary evaluation in ultrasound examination, based on the analysis of artifacts in animals with clinical signs of respiratory failure and possibility of pulmonary edema diagnosis with recognition of the degree of its severity. The study was conduct- ed on 47 animals (29 dogs and 18 cats) of different breeds, age and sex. In all of animals prior to the transthoracic lung and pleura ultrasound examination (TLPUS), all animals were subjected to a clinical examination and hematological blood test as well as chest radiography examination in three projections. Ultrasound imaging of the chest in each animal was performed at designated four defined segments. TLPUS in dogs and cats based on an analysis of artifacts allows recogni- tion of pulmonary edema, to the degree comparable to chest X-ray examination. The number of depicted B-lines artifacts is proportional to the degree of pulmonary edema. These results allow to reduce the number of radiographs and allow the shortening of the diagnostic process for pa- tients in life-threatening condition.
Go to article

Abstract

Measurements of the hardening process of the selected self-setting sands are presented in the hereby paper. Moulding sands were prepared on the matrix of „Szczakowa” sand of the Sibelco Company. Two resins: phenol-formaldehyde-furfuryl (FF/AF) and urea-formaldehydefurfuryl (MF/AF) were used for making moulding sands. – Methylbenzene-sulphonic acid was applied as a hardener for the moulding sand on FF/AF resin, while paratoluene-sulphonic acid for the moulding sand on MF/AF resin. Both hardeners were used in two concentrations: low – the so-called ‘slow’ hardener and high - ‘fast’ hardener. During investigations, the courses of the hardening process were determined, more accurately changes of the velocity of the ultrasound wave passage through the moulding sand cL = f(t) and changes of the moulding sand hardening degree versus time, Sx = f(t). In addition, the kinetics of the hardening process was determined. Measurements were performed on the research stand for ultrasound investigations.
Go to article

Abstract

Measurements of the hardening process course of the selected self-hardening moulding sands with the reclaimed material additions to the matrix, are presented in the hereby paper. Moulding sands were produced on the „Szczakowa” sand (of the Sibelco Company) as the matrix of the main fraction FG 0,40/0,32/0,20, while the reclaim was added to it in amounts of 20, 50 and 70%. Regeneration was performed with a horizontal mechanical regenerator capacity of 10 t/h. In addition, two moulding sands, one on the fresh sand matrix another on the reclaimed matrix, were prepared for comparison. Highly-fluid urea-furfuryl resin was used as a binder, while paratoluensulphonic acid as a hardener. During investigations the hardening process course was determined, it means the wave velocity change in time: cL = f(t). The hardening process kinetics was also assessed (dClx/dt = f(t)). Investigations were carried out on the research stand for ultrasound tests. In addition strength tests were performed.
Go to article

Abstract

The aim of this article is to present a modern method of convective drying intensification caused by the external action of ultrasound. The purpose of this study is to discover the mechanism of ultrasonic interaction between the solid skeleton and the moisture in pores. This knowledge may help to explain the enhancement of drying mechanism affected by ultrasound, particularly with respect to biological products like fruits and vegetables. The experimental kinetics tests were conducted in a hybrid dryer equipped with a new ultrasonic generator. The drying kinetics curves determined on the basis of drying model developed by the author were validated with those by the ones obtained from experimental tests. The intensification of heat and mass transfer processes due to ultrasound induced heating effect and vibration effect are analysed. The obtained results allow to state that ultrasound makes drying processes more effective and enhance the drying efficiency of biological products without significant elevation of their temperature.
Go to article

Abstract

In this paper the influence of high power airborne ultrasound on drying biological material (Lobo apple) properties is considered. Apple samples were dried convectively at 75 ◦C and air flow of 2 m/s with and without ultrasound assist at 200W. During experiments, sun-drenched and not sun-drenched part of fruits were considered separately to show, how the maturity of the product influences dry material properties. Dried apple crisps in a size of small bars were subjected to compression tests during which acoustic emission (AE) was used. Analysis of AE and strength test results shows that correlations between received acoustic signals and sensory attributes (crispness, brittleness) of dried apples can be found. It was noted that ultrasound improved fruit brittleness in comparison with pure convective processes, where fruit maturity determines a kind of destruction and behaviour of dried apple crisps.
Go to article

Abstract

Topic of this work is to compare metalurgy of cast irons poured into sand moulds and into shell molds at IEG Jihlava company and from it following differencies in structures of thin- and thick-walled castings. This work is dealing with investigation and experimental measurement on surfaces and sections suitable thin- and thick-walled investment castings at IEG Jihlava. Cast irons with flake graphite (grey cast iron) and cast irons with spheroidal graphite (ductile cast iron). Both mechanical and physical properties are determined using calculations from as measured values of wall thicknesses L and Lu, Vickers hardness and remanent magnetism. Measurement results are discussed, findings are formulated and methods for castings metallurgical quality improvement are recommended finally
Go to article

Abstract

Commercially available cardiac scanners use 64–128 elements phased-array (PA) probes and classical delay-and-sum beamforming to reconstruct a sector B-mode image. For portable and hand-held scanners, which are the fastest growing market, channel count reduction can greatly decrease the total power and cost of devices. The introduction of ultra-fast imaging methods based on plane waves and diverging waves provides new insight into heart’s moving structures and enables the implementation of new myocardial assessment and advanced flow estimation methods, thanks to much higher frame rates. The goal of this study was to show the feasibility of reducing the channel count in the diverging wave synthetic aperture image reconstruction method for phased-arrays. The application of ultra-fast 32-channel subaperture imaging combined with spatial compounding allowed the frame rate of approximately 400 fps for 120 mm visualization to be achieved with image quality obtained on par with the classical 64-channel beamformer. Specifically, it was shown that the proposed method resulted in image quality metrics (lateral resolution, contrast and contrast-to-noise ratio), for a visualization depth not exceeding 50 mm, that were comparable with the classical PA beamforming. For larger visualization depths (80–100 mm) a slight degradation of the above parameters was observed. In conclusion, diverging wave phased-array imaging with reduced number of channels is a promising technology for low-cost, energy efficient hand-held cardiac scanners.
Go to article

Abstract

This paper considers the assessment of attenuation in aluminium alloys castings and in cast iron prepared by gravity casting method and by casting under pressure. The issue of ultrasound attenuation is important in setting the conditions of non-destructive (NDT) testing, especially in casted materials. The characteristics of the ultrasonic technique and ultrasonic attenuation and the calculation of the attenuation and the velocity of ultrasound are presented in the theoretical part of this paper. For experimental measurements, cylindrical castings from AlSi alloy (a hypoeutectic alloy with a silicon content of about 7% - AlSi7 and a eutectic alloy with a silicon content of about 12% - AlSi12) and from grey and ductile cast iron were made. The ultrasonic records of the casting control, the calculation of ultrasound attenuation for individual samples are listed and described in the experimental part. The evaluation of measurements and comparison of calculated ultrasound attenuation is at the end of this article.
Go to article

Abstract

Longitudinal and shear ultrasonic wave velocities were measured versus temperature in the viscosity standards of Paragon S8000S, N30000S and Cannon N2700000. The measurements were performed by the through-transmission method at the frequency of 2 MHz. Ultrasonic pulses were sent via polymethyl methacrylate (PMMA) waveguides between the tips of which a small amount of the particular standard liquid was placed. The velocities of longitudinal and shear waves were determined to depend on the viscosity of the liquid and increase with the viscosity.
Go to article

Abstract

This paper presents and analyses the results of a simulation of the acoustic field distribution in sectors of a 1024-element ring array, intended for the diagnosis of female breast tissue with the use of ultrasonic tomography. The array was tested for the possibility to equip an ultrasonic tomograph with an additional modality - conventional ultrasonic imaging with the use of individual fragments (sections) of the ring array. To determine the acoustic field for sectors of the ring array with a varying number of activated ultrasonic transducers, a combined sum of all acoustic fields created by each elementary transducer was calculated. By the use of MATLAB software, a unique algorithm was developed, for a numerical determination of the distribution of pressure of an ultrasonic wave on any surface or area of the medium generated by the concave curvilinear structure of rectangular ultrasound transducers with a geometric focus of the beam. The analysis of the obtained results of the acoustic field distribution inside the ultrasonic ring array used in tomography allows to conclude that the optimal number of transducers in a sector enabling to obtain ultrasound images using linear echographic scanning is 32 ≤ n ≤ 128, taking into account that due to an increased temporal resolution of ultrasonic imaging, this number should be as low as possible.
Go to article

Abstract

Quantitative ultrasound has been widely used for tissue characterization. In this paper we propose a new approach for tissue compression assessment. The proposed method employs the relation between the tissue scatterers’ local spatial distribution and the resulting frequency power spectrum of the backscattered ultrasonic signal. We show that due to spatial distribution of the scatterers, the power spectrum exhibits characteristic variations. These variations can be extracted using the empirical mode decomposition and analyzed. Validation of our approach is performed by simulations and in-vitro experiments using a tissue sample under compression. The scatterers in the compressed tissue sample approach each other and consequently, the power spectrum of the backscattered signal is modified. We present how to assess this phenomenon with our method. The proposed in this paper approach is general and may provide useful information on tissue scattering properties.
Go to article

Abstract

The paper presents results of measuring attenuation coefficient of the Al-20 wt.% Zn alloy (AlZn20) inoculated with different grain refiners. During experiments the melted alloys were doped with Al-Ti3-C0.15 refining master alloy. Basing on measurements performed by Krautkramer USLT2000 device with 1MHz ultrasound wave frequency it was stated that grain refinement reduces the attenuation coefficient by about 20-25%. However, the examined alloys can be still classified as the high-damping ones of attenuation greater than 150 dB/m.
Go to article

Abstract

Reason for and risks of using of cast iron with vermicular graphite for typical construction parts. Ultrasound checking of graphite shape. Factors influencing plausibility of result. Difference between laboratory and operation application. Roughness, parallelism, stabilityand size dimension of walls. Conditions, proposals for simplification and productivity enhancement of castings checking. Recommendation.
Go to article

This page uses 'cookies'. Learn more