Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 31
items per page: 25 50 75
Sort by:

Abstract

When the distribution of water quality samples is roughly balanced, the Bayesian criterion model of water-inrush source generally can obtain relatively accurate results of water-inrush source identification. However, it is often difficult to achieve desired classification results when training samples are imbalanced. Sample imbalance is common in the source identification of mine water-inrush. Therefore, we propose a three-dimensional (3D) spatial resampling method based on rare water quality samples, which achieves the balance of water quality samples. Based on the virtual water sample points distributed by the 3D grid, the method uses the 3D Inverse Distance Weighting (IDW) method to interpolate the groundwater ion concentration of the virtual water samples to achieve oversampling of rare water samples. Case study in Gubei Coal Mine shows that the method improves overall discriminant accuracy of the Bayesian criterion model by 5.26%, from 85.26% to 90.69%. In particular, the discriminative precision of the rare class is improved from 0% to 83.33%, which indicates that the method can improve the discriminant accuracy of the rare class to large extent. In addition, this method increases the Kappa coefficient of the model by 19.92%, from 52.26% to 72.19%, increasing the degree of consistency from “general” to “significant”. Our research is of significance to enriching and improving the theory of prevention and treatment of mine water damage.
Go to article

Abstract

Ablation casting is a technological process in which the increased cooling rate causes microstructure refinement, resulting in improved mechanical properties of the final product. This technology is particularly suitable for the manufacture of castings with intricate shapes and thin walls. Currently, the ablation casting process is not used in the Polish industry. This article presents the results of strength tests carried out on moulding sands based on hydrated sodium silicate hardened in the Floster S technology, intended for ablation casting of the AlSi7Mg (AK7) aluminium alloy. When testing the bending and tensile strengths of sands, parameters such as binder and hardener content were taken into account. The sand mixtures were tested after 24h hardening at room temperature. The next stage of the study describes the course of the ablation casting process, starting with the manufacture of foundry mould from the selected moulding mixture and ending in tests carried out on the ready casting to check the surface quality, structure and mechanical properties. The results were compared with the parallel results obtained on a casting gravity poured into the sand mould and solidifying in a traditional way at ambient temperature.
Go to article

Abstract

Rivers are considered as one of the main resources of water supply for various applications such as agricultural, drinking and industrial purposes. Also, these resources are used as a place for discharge of sewages, industrial wastewater and agricultural drainage. Regarding the fact that each river has a certain capacity for acceptance of pollutants, nowadays qualitative and environmental investigations of these resources are proposed. In this study, qualitative investigation of the Talar river was done according to Oregon Water Quality Index (OWQI), National Sanitation Foundation Water Quality Index (NSFWQI) and Wilcox indicators during 2011–2012 years at upstream, midstream and downstream of the river in two periods of wet and dry seasons. According to the results of OWQI, all of the values at 3 stations and both periods are placed at very bad quality category and the water is not acceptable for drinking purposes. According to NSFWQI, the best condition was related to the upstream station at wet season period (58, medium quality) and the worst condition was related to the downstream in wet season period (46, very bad quality). Also the results of Wilcox showed that in both periods of wet season and dry season, the water quality is getting better from upstream station to the downstream station, and according to the index classification, the downstream water quality has shown good quality and it is suitable for agriculture.
Go to article

Abstract

The work is an attempt to assess piped water quality in four counties located in east central Poland. Piped water was analysed for three successive years in each county. Water samples were tested for the following physical and chemical parameters: turbidity, colour, conductivity, taste, odour, pH, nitrates (III), nitrates (V), iron and manganese. They were compared with the current standard values. Preliminary data analysis included an analysis of maximum and minimum values of physical and chemical parameters, and it revealed that turbidity, colour, iron and manganese contents exceeded the permissible standards in all the counties. Percentages of parameters exceedances and mean values of the exceedances were used to rank the counties in terms of water quality. The ranking was obtained by means of multidimensional comparative analysis. It was demonstrated that best quality water was supplied by Węgrów County water supply system which was followed by Mińsk Mazowiecki County. The third rank was assigned to Łosice County and the poorest quality water was found to be supplied by Siedlce County water supply system.
Go to article

Abstract

The data set of the Warta discharges in Poznań (Poland) is one of the largest in the world as the daily observations of river stages have been conducted without interruptions since January, 1st, 1822. The Poznań measurement profile is situated in the 243.6 km and closes the catchment area of approximately 25 thousand square kilometers. The data used as the input in the paper were daily values of the Warta discharges in Poznań in the years 1822-2012. The climate in Poznań, a city situated in the centre of the Wielkopolska (Greater Poland) region, is relatively stable (Miler et al. 2005). Also the Warta River runoff shows considerable stability, especially in terms of mean annual values. Short-term trends are random in character. It was found that the Jeziorsko reservoir (total storage volume of 203 000 000 m3, officially put to use on September, 9th, 1987) significantly reduced daily variability of the flows and reduced peak discharge of the flood wave in the summer of 1997 on the Warta River at Poznań. The calculated periodogram for mean annual discharges of the Warta River in Poznań shows that there are main periodicities of ca. 10 year lengths. The research of the Provincial Inspectorate for Environmental Protection (WIOŚ) in Poznań shows a gradual improvement of water quality in the Warta River in Poznań.
Go to article

Abstract

The aim of this study was to examine the changes in the chemical composition of shallow groundwater and its quality that have occurred in the last decade in an agriculturally used, heavily populated and characterized by a complex geological structure, catchment of the Stara Rzeka river, located in the flysch part of the Outer Carpathians. Water samples were collected during 2013 from 19 still operating wells. Analyses of pH, electrolytic conductivity and chemical composition by ion chromatography were conducted. The obtained results were compared with the results of studies conducted in 2003 for the same wells. The quality of groundwater and its suitability for consumption was assessed based on the regulations currently existing in Poland. 21% of the wells still do not meet the requirements for drinking water in terms of at least one component. However, there was a decrease in the concentration of mineral forms of nitrogen and phosphorus in most of the wells and their mean concentration as compared to 2003 was reduced. In terms of physical and chemical characteristics groundwater of this region is typical of the hypergenic zone of the temperate climate. The highest concentrations were observed for Ca2+ and HCO3- ions, while K+ and Cl- were characterized by the largest variability. Principal Component Analysis (PCA) demonstrated that the factors determining the quality and chemical composition of the analyzed waters include the composition of bedrock (mineralogy of the rock environment) and human economic activity, and that they have not been significantly changed over the past decade.
Go to article

Abstract

Multidimensional exploratory techniques, such as the Principal Component Analysis (PCA), have been used to analyze long-term changes in the flow regime and quality of water of the lowland dam reservoir Turawa (south-west Poland) in the catchment of the Mała Panew river (a tributary of the Odra). The paper proves that during the period of 1998–2016 the Turawa reservoir was equalizing the river’s water flow. Moreover, various physicochemical water quality indicators were analyzed at three measurement points (at the tributary’s mouth into the reservoir, in the reservoir itself and at the outflow from the reservoir). The water quality assessment was performed by analyzing physicochemical indicators such as water temperature, TSS, pH, dissolved oxygen, BOD5, NH4+, NO3-, NO2-, N, PO43-, P, electrolytic conductivity, DS, SO42- and Cl- . Furthermore, the correlations between all these water quality indicators were analyzed statistically at each measurement point, at the statistical signifi cance level of p ≤ 0.05. PCA was used to determine the structures between these water quality variables at each measurement point. As a result, a theoretical model was obtained that describes the regularities in the relationships between the indicators. PCA has shown that biogenic indicators have the strongest influence on the water quality in the Mała Panew. Lastly, the differences between the averages of the water quality indicators of the inflowing and of the outflowing water were considered and their significance was analyzed. PCA unveiled structure and complexity of interconnections between river flow and water quality. The paper shows that such statistical methods can be valuable tools for developing suitable water management strategies for the catchment and the reservoir itself.
Go to article

Abstract

In the study, environmetric methods were successfully performed a) to explore natural and anthropogenic controls on reservoir water quality, b) to investigate spatial and temporal differences in quality, and c) to determine quality variables discriminating three reservoirs in Izmir, Turkey. Results showed that overall water quality was mainly governed by “natural factors” in the whole region. A parameter that was the most important in contributing to water quality variation for one reservoir was not important for another. Between summer and winter periods, difference in arsenic concentrations were statistically significant in the Tahtalı, Ürkmez and iron concentrations were in the Balçova reservoirs. Observation of high/low levels in two seasons was explained by different processes as for instance, dilution from runoff at times of high flow seeped through soil and entered the river along with the rainwater run-off and adsorption. Three variables “boron, arsenic and sulphate” discriminated quality among Balçova & Tahtalı, Balçova & Ürkmez and two variables “zinc and arsenic” among the Tahtalı & Ürkmez reservoirs. The results illustrated the usefulness of multivariate statistical techniques to fingerprint pollution sources and investigate temporal/spatial variations in water quality.
Go to article

Abstract

This study illustrates the benefits of statistical techniques to analyze spatial and temporal variations in water quality. In this scope water quality differentiation caused by anthropogenic and natural factors in the Tahtali and Balçova reservoirs in western Turkey was investigated using discriminant analysis-DA, Mann Whitney U techniques. Effectiveness of pollution prevention measures was analyzed by Mann Kendall and Sen’s Slope estimator methods. The water quality variables were divided into three groups as physical-inorganic, organic and inorganic pollution parameters for the study. Results showed that water quality between reservoirs was differentiated for “physical-inorganic” and “organic pollution” parameters. Degree of influence of water quality by urbanization was higher in the Tahtali reservoir and in general, no trend detection at pollution indicators explained by effective management practices at both sites.
Go to article

Abstract

Cyanobacterial and algal blooms lead to the deterioration of freshwater ecosystems but also generate technical problems in water management in the industry. Power plants often use freshwater lakes and reservoirs as a source of cooling water and in the case of cogeneration stations (combined heat and power) also as a source of agents for heating energy distribution. A preliminary research in one of the heat and power stations in eastern Poland which uses water from suffering with algal blooms reservoir was carried out in April 2011. The study was focused on the changes in the phytoplankton quantitative and qualitative structure as well as in basic physico- -chemical parameters along the water treatment line, which consists of several stages serving as sampling points (from the pump station to the purified water tank). The initial phytoplankton biomass in the reservoir was high (fresh biomass: 65.8 mg dm-3, chlorophyll a: 146.7 μg dm-3) with diatoms prevailing (98% of the total biomass) from which the most numerous were: Cyclotella comta and Aulacoseira granulata. After several stages of the purification process (sedimentation, biocide addition, flocculation, gravel filtering, ion exchange) the water still consisted a considerable amount of algae (fresh biomass: 2.48 mg dm-3, chlorophyll a: 6.0 μg dm-3). However, the final biomass in purified water tank (after reversed osmosis process) was very low (fresh biomass: 0.03 mg dm-3, chlorophyll a: 0.1 μg dm-3). Results had shown that high algal biomass in the water used in power generation plant is difficult to remove and consequently requires considerable technical (thus also economical) efforts to adjust the water for the industrial use.
Go to article

This page uses 'cookies'. Learn more