Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy publikacji
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 287
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

The paper presents the core design, model development and results of the neutron transport simulations of the large Pressurized Water Reactor based on the AP1000 design. TheSERPENT2.1.29 Monte Carlo reactor physics computer code with ENDF/BVII and JEFF 3.1.1 nuclear data libraries was applied. The full-core 3D models were developed according to the available Design Control Documentation and the literature. Criticality simulations were performed for the core at the Beginning of Life state for Cold Shutdown, Hot Zero Power and Full Power conditions. Selected core parameters were investigated and compared with the design data: effective multiplication factors, boron concentrations, control rod worth, reactivity coefficients and radial power distributions. Acceptable agreement between design data and simulations was obtained, confirming the validity of the model and applied methodology.
Przejdź do artykułu

Abstrakt

Experimental design and computational model for predicting debonding initiation and propagation are of interest of scientists and engineers. The design and model are expected to explain the phenomenon for a wide range of loading rates. In this work, a method to measure and quantify debonding strength at various loading rates is proposed. The method is experimentally verified using data obtained from a static test and a pulse-type dynamic test. The proposed method involves the cohesive zone model, which can uniquely be characterized with a few parameters. Since those parameters are difficult to be measured directly, indirect inference is deployed where the parameters are inferred by minimizing discrepancy of mechanical response of a numerical model and that of the experiments. The main finding suggests that the design is easy to be used for the debonding characterization and the numerical model can accurately predict the debonding for the both loading cases. The cohesive strength of the stress-wave case is significantly higher than that of the static case; meanwhile, the cohesive energy is twice larger.
Przejdź do artykułu

Abstrakt

In rotating machineries, misalignment is considered as the second most major cause of failure after unbalance. In this article, model-based multiple fault identification technique is presented to estimate speed-dependent coupling misalignment and bearing dynamic parameters in addition with speed independent residual unbalances. For brevity in analysis, a simple coupled rotor bearing system is considered and analytical approach is used to develop the identification algorithm. Equations of motion in generalized co-ordinates are derived with the help of Lagrange's equation and least squares fitting approach is used to estimate the speed-dependent fault parameters. Present identification algorithm requires independent sets of forced response data which are generated with the help of different sets of trial unbalances. To avoid/suppress the ill-conditioning of regression equation, independent sets of forced response data are obtained by rotating the rotor in clock-wise and counter clock-wise directions, alternatively. Robustness of algorithm is checked for different levels of measurement noise.
Przejdź do artykułu
Słowa kluczowe CFD FLUENT parallel-counter flow

Abstrakt

Heat exchangers are widely employed in numerous industrial applications to serve the heat recovery and cooling purpose. This work reports a performance analysis of a tube in tube heat exchanger for different flow configuration under variable operating conditions. The experimental investigation was performed on a U-shaped double pipe heat exchanger set up whereas Commercial Computational Fluid Dynamics code FLUENT along with k-ε turbulence modeling scheme was implemented for the simulation study. The flow solution was achieved by implementing k-ε turbulence modeling scheme and the simulation findings were compared with the experimental results. The experimental findings were in good agreement with the simulation results. The counter-flow configuration was found to be 29.4% more effective than the co-current one at low fluid flow rate. Direct relationship between heat transfer rate and flow rate is observed while effectiveness and LMTD showed inverse relationship with it. The significance of inlet temperature of hot and cold stream has been evaluated, they play crucial role in heat exchange process.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji