Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 75
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

In the paper there are presented tools for structural modelling of throttle diagrams that are developed as a basis to building transducers used for measuring fluid parameters. The definitions of throttle diagrams are improved and their classification is developed. Dependences are obtained to calculate the number of measuring channels in a throttle diagram and the number of possible variants of measuring transducers using the combinatory apparatus. A procedure for mathematical description of throttle diagrams in the form of graphs is proposed which makes it possible to obtain all diagrams with different measuring channels on the basis of certain throttle diagram. The model is developed in the form of a graph. A schematic diagram and a mathematical model of a transducer measuring physical and mechanical parameters of Bingham plastic fluid are developed based on a throttle diagram.
Przejdź do artykułu

Abstrakt

Knowledge of gravitational acceleration in metrology is required for traceable force and pressure calibrations, furthermore the redefinition of the SI base unit of kilogram requires absolute accomplishment of the gravitational acceleration. A direct free-fall gravimeter is developed using pneumatic grippers for test mass handling and a semi-rotary actuator for repositioning, i.e. automated re-launching. The catch and release system is powered by compressed air. This eliminates electric interferences around the test mass. A simplified method of signal capturing and processing is used on the designed gravimeter. A digital frequency trigger is implemented in the post processing algorithms to ensure that the signals are analysed from the identical effective height. The experimental results measured the site gravitational acceleration of 9.786043 ms��2 with a statistical uncertainty of #6;29 ms��2.
Przejdź do artykułu

Abstrakt

A mode-locked Tm3+-doped fibre laser and amplifier operating at a central wavelength of 1994.3 nm is demonstrated. A thulium oscillator is passively mode-locked by a semiconductor saturable absorber mirror to generate an average power of 17 mW at a fundamental repetition rate of 81 MHz in a short linear cavity. This 2-mm laser train is amplified to an average power to 20.26 W by two double-clad thulium-doped allfibre amplifiers. The pulse energy, duration and peak power is 250 nJ, 23 ps and 9.57 kW, respectively. This represents one of the highest values of average power at #24; 2-mm-wavelength for picosecond thulium-doped fibre lasers and amplifiers. The performance of the laser system is described in details.
Przejdź do artykułu

Abstrakt

The field of mechanical manufacturing is becoming more and more demanding on machining accuracy. It is essential to monitor and compensate the deformation of structural parts of a heavy-duty machine tool. The deformation of the base of a heavy-duty machine tool is an important factor that affects machining accuracy. The base is statically indeterminate and complex in load. It is difficult to reconstruct deformation by traditional methods. A reconstruction algorithm for determining bending deformation of the base of a heavy-duty machine tool using inverse Finite Element Method (iFEM) is presented. The base is equivalent to a multi-span beam which is divided into beam elements with support points as nodes. The deflection polynomial order of each element is analysed. According to the boundary conditions, the deformation compatibility conditions and the strain data measured by Fiber Bragg Grating (FBG), the deflection polynomial coefficients of a beam element are determined. Using the coordinate transformation, the deflection equation of the base is obtained. Both numerical verification and experiment were carried out. The deflection obtained by the reconstruction algorithm using iFEM and the actual deflection measured by laser displacement sensors were compared. The accuracy of the reconstruction algorithm is verified.
Przejdź do artykułu

Abstrakt

Terrestrial laser scanning (TLS) is one of the instruments for remote detection of damage of structures (cavities, cracks) which is successfully used to assess technical conditions of building objects. Most of the point clouds analysis from TLS relies only on spatial information (3D–XYZ). This study presents an approach based on using the intensity value as an additional element of information in diagnosing technical conditions of architectural structures. The research has been carried out in laboratory and field conditions. Its results show that the coefficient of laser beam reflectance in TLS can be used as a supplementary source of information to improve detection of defects in constructional objects.
Przejdź do artykułu

Abstrakt

Automatic gender detection is a process of determining the gender of a human according to the characteristic properties that represent the masculine and feminine attributes of a subject. Automatic gender detection is used in many areas such as customer behaviour analysis, robust security system construction, resource management, human-computer interaction, video games, mobile applications, neuro-marketing etc., in which manual gender detection may be not feasible. In this study, we have developed a fully automatic system that uses the 3D anthropometric measurements of human subjects for gender detection. A Kinect 3D camera was used to recognize the human posture, and body metrics are used as features for classification. To classify the gender, KNN, SVM classifiers and Neural Network were used with the parameters. A unique dataset gathered from 29 female and 31 male (a total of 60 people) participants was used in the experiment and the Leave One Out method was used as the cross-validation approach. The maximum accuracy achieved is 96.77% for SVM with an MLP kernel function.
Przejdź do artykułu

Abstrakt

The micro-Particle Image Velocimetry (micro-PIV) was used to measure flow velocities in micro-channels in two passive micromixers: a microfluidic Venturi mixer and a microfluidic spiral mixer, both preceded by standard “Y” micromixers. The micro-devices were made of borosilicate glass, with micro-engineering techniques dedicated to micro-PIV measurements. The obtained velocity profiles show differences in the flow structure in both cases. The micro-PIV enables understanding the micro-flow phenomena and can help to increase reproducibility of micromixers in mass production.
Przejdź do artykułu

Abstrakt

The task of generating fast and accurate three-dimensional (3D) models of objects or scenes through a sequence of non-calibrated images is an active field of research. The recent development in algorithm optimization has resulted in many automatic solutions that can provide an accurate 3D model from texture-full objects. Structure-from-motion (SfM) is an image-based method that uses discriminative point-based feature identifier, such as SIFT, to locate feature points in the images. This method faces difficulties when presented with the objects made of homogenous or texture-less surfaces. To reconstruct such surfaces a well-known technique is to apply an artificial variety by covering the surface with a random texture pattern prior to the image capturing process. In this work, we designed three series of image patterns which are tested based on the contrast and density ratio which increases from the first to the last pattern within the same series. The performance of the patterns is evaluated by reconstructing the surface of a texture-less object and comparing it with the true data. Using the best-found patterns from the experiments, a 3D model of a Moai statue is reconstructed. The experimental results demonstrate that the density and structure of a pattern highly affects the quality of the reconstruction.
Przejdź do artykułu

Abstrakt

A new method of noise generation based on software implementation of a 7-bit LFSR based on a common polynomial PRBS7 using microcontrollers equipped with internal ADCs and DACs and a microcontroller noise generator structure are proposed in the paper. Two software applications implementing the method: written in ANSI C and based on the LUT technique and written in AVR Assembler are also proposed. In the method the ADC results are used to reseed the LFSR after its each full work cycle, what improves randomness of generated data, which results in a greater similarity of the generated random signal to white noise, what was confirmed by the results of experimental research. The noise generator uses only the internal devices of the microcontroller, hence the proposed solution does not introduce hardware redundancy to the system.
Przejdź do artykułu

Abstrakt

This paper presents the design, fabrication and testing of an improved thin-film thermal converter based on an electro-thermally excited and piezo-resistively detected micro-bridge resonator. The resonant thermal converter comprises a bifilar heater and an opposing micro-bridge resonator. When the micro-bridge resonator absorbs the radiant heat from the heater, its axial strain changes, then its resonant frequency follows. Therefore the alternating voltage or current can be transferred to the equivalent DC quantity. A non-contact temperature sensing mechanism eliminates heat loss from thermopiles and reduces coupling capacitance between the temperature sensor and the heater compared with traditional thin-film thermal converters based on thermopiles. In addition, the quasi-digital output of the resonant thin-film thermal converter eliminates such problems as intensity fluctuations associated with analogue signals output by traditional thin-film thermal converters. Using the fast-reversed DC (FRDC) method, the thermoelectric transfer difference, which determines the frequency-independent part of the ac-dc transfer difference, is evaluated to be as low as 1:1 #1; 10��6. It indicates that the non-contact temperature sensing mechanism is a feasible method to develop a high-performance thermal converter.
Przejdź do artykułu

Abstrakt

The void fraction is one of the most important parameters characterizing a multiphase flow. The prediction of the performance of any system operating with more than single phase relies on our knowledge and ability to measure the void fraction. In this work, a validated simulation study was performed in order to predict the void fraction independent of the flow pattern in gas-liquid two-phase flows using a gamma ray 60Co source and just one scintillation detector with the help of an artificial neural network (ANN) model of radial basis function (RBF). Three used inputs of ANN include a registered count under Compton continuum and counts under full energy peaks of 1173 and 1333 keV. The output is a void fraction percentage. Applying this methodology, the percentage of void fraction independent of the flow pattern of a gas-liquid two-phase flow was estimated with a mean relative error less than 1.17%. Although the error obtained in this study is almost close to those obtained in other similar works, only one detector was used, while in the previous studies at least two detectors were employed. Advantages of using fewer detectors are: cost reduction and system simplification.
Przejdź do artykułu

Abstrakt

In this paper, two new sinusoidal signal frequency estimators calculated on the basis of four equally spaced signal samples are presented. These estimators are called four-point estimators. Simulation and experimental research consisting in signal frequency estimation using the invented estimators have been carried out. Simulation has also been performed for frequency tracking. The simulation research was carried out applying the MathCAD computer program that determined samples of a sinusoidal signal disturbed by Gaussian noise. In the experimental research, sinusoidal signal samples were obtained by means of a National Instruments PCI-6024E data acquisition card and an Agilent 33220A function generator. On the basis of the collected samples, the values of four-point estimators invented by the authors and, for comparison, the values of three- and four-point estimators proposed by Vizireanu were determined. Next, estimation errors of the signal frequency were determined. It has been shown that the invented estimators can estimate a signal frequency with greater accuracy.
Przejdź do artykułu

Abstrakt

Due to the difficulty of detecting traces of organic acid mixture in an aqueous sample and the complexity of resolving UV-Vis spectra effectively, a combinatory method based on a self-made radical electric focusing solid phase extraction (REFSPE) device, UV-Vis detection and partial least squares (PLS) calculation is proposed here. In this study, REFSPE was used to enhance the extraction process of analytes between the aqueous phase and the membrane phase to enrich the trace of mixed organic acid efficiently. Then, the analytes, which were eluted from the adsorption film by ethanol with the assistance of an ultrasonic cleaning machine, were detected with UV-Vis spectrophotometry. After that, the PLS method was introduced to solve the problem of overlapping peaks in UV-Vis spectra of mixed substances and to quantify each compound. The linearly dependent coefficients between the predicted value of the model and the actual concentration of the sample were all higher than 0.99. The limit values of detection for benzoic acid, phthalic acid and p-toluene sulfonic acid were found at 9.9 #22;g/L, 12.2 #22;g/L and 13.8 #22;g/L with the relative recovery values between 84.8% and 117.9%. The RSD (n = 20) values of each component are 1.17%, 1.11% and 0.86%, respectively. Therefore, the proposed combined method can determine traces of complex materials in an aqueous sample efficiently and has wonderful potential applications.
Przejdź do artykułu

Abstrakt

The paper presents the properties of a strain sensor, which was made using the micro hole collapse method and operates in the configuration of a Mach-Zehnder modal interferometer with a PM-1550-01 polarization maintaining photonic crystal fibre. The sensor’s transfer curve was determined analytically. Its strain sensitivity, determined from measurements, decreases slightly with increasing wavelength and is in a range from 􀀀2:01 to 􀀀2:23 pm/me in the wavelength range 1520–1580 nm. Based on the Fourier analysis of the wavelength spectrum of the constructed sensor, the difference of the group refractive indices of the core and the cladding of the photonic crystal fibre was determined, which are in a range from 7:45#1;10􀀀3 to 1:01#1;10􀀀2. The temperature sensitivity of the sensor, determined on the basis of measurements performed in a range from 23 to 60◦C, is positive and equals 5.9 pm/K.
Przejdź do artykułu

Abstrakt

The paper deals with multiple soft fault diagnosis of analogue circuits. A method for diagnosis of linear circuits is developed, belonging to the class of the fault verification techniques. The method employs a measurement test performed in the frequency domain, leading to the nonlinear least squares problem. To solve this problem the Powell minimization method is applied. The diagnostic method is adapted to real circumstances, taking into account deviations of fault-free parameters and measurement uncertainty. Two examples of electronic circuits encountered in practice demonstrate that the method is efficient for diagnosis of middle-sized circuits. Although the method is dedicated to linear circuits it can be adapted to multiple soft fault diagnosis of nonlinear ones. It is illustrated by an example of a CMOS circuit designed in a sub-micrometre technology.
Przejdź do artykułu

Abstrakt

Microwave frequency detectors enable immediate determination of an unknown microwave signal frequency. Measurement is possible if the output characteristic of a frequency detector is unequivocal in a selected band of operation. The paper presents a method for obtaining unequivocal output characteristics for a given band of frequency detector operation.
Przejdź do artykułu

Abstrakt

This work shows a time-domain method for the discrimination and digitization of parameters of voltage pulses coming from optical detectors, taking into account the presence of electronic noise and afterpulsing. Our scheme is based on an FPGA-based time-to-digital converter as well as an adjustable-threshold comparator complemented with commercial elements. Here, the design, implementation and optimization of a multiphase TDC using delay lines shorter than a single clock period is also described. The performance of this signal processing system is discussed through the results from the statistical code density test, statistical distributions of measurements and information gathered from an optical detector. Unlike dual voltage threshold discriminators or constant-fraction discriminators, the proposed method uses amplitude and time information to define an adjustable discrimination window that enables the acquisition of spectra.
Przejdź do artykułu

Abstrakt

The phase jitter enables to assess quality of signals transmitted in a bi-directional, long-distance fibre optic link dedicated for dissemination of the time and frequency signals. In the paper, we are considering measurements of jitter using a phase detector the detected frequency signal and the reference signal are supplied to. To cover the wideband jitter spectrum the detected signal frequency is divided and – because of the aliasing process – higher spectral components are shifted down. We are also examining the influence of a residual jitter that occurs in the reference signal generated by filtering the jitter occurring in the same signal, whose phase fluctuations we intend to measure. Then, we are discussing the evaluation results, which were obtained by using the target fibre optic time and frequency transfer system.
Przejdź do artykułu

Abstrakt

This paper presents a portable exhaled breath analyser, developed to detect selected diseases. The set-up employs resistive gas sensors: commercial MEMS sensors and prototype gas sensors made of WO3 gas sensing layers doped with various metal ingredients. The set-up can modulate the gas sensors by applying UV light to induce physical changes of the gas sensing layers. The sensors are placed in a tiny gas chamber of a volume of about 22 ml. Breath samples can be either injected or blown into the gas chamber when an additional pump is used to select the last breath phase. DC resistance and resistance fluctuations of selected sensors using separate channels are recorded by an external data acquisition board. Low-noise amplifiers with a selected gain were used together with a necessary bias circuit. The set-up monitors other atmospheric parameters interacting with the responses of resistive gas sensors (humidity, temperature, atmospheric pressure). The recorded data may be further analysed to determine optimal detection methods.
Przejdź do artykułu

Abstrakt

Development of facial recognition or expression recognition algorithms requires input data to thoroughly test the performance of algorithms in various conditions. Researchers are developing various methods to face challenges like illumination, pose and expression changes, as well as facial disguises. In this paper, we propose and establish a dataset of thermal facial images, which contains a set of neutral images in various poses as well as a set of facial images with different posed expressions collected with a thermal infrared camera. Since the properties of face in the thermal domain strongly depend on time, in order to show the impact of aging, collection of the dataset has been repeated and a corresponding set of data is provided. The paper describes the measurement methodology and database structure. We present baseline results of processing using state-of-the-art facial descriptors combined with distance metrics for thermal face reidentification. Three selected local descriptors, a histogram of oriented gradients, local binary patterns and local derivative patterns are used for elementary assessment of the database. The dataset offers a wide range of capabilities – from thermal face recognition to thermal expression recognition.
Przejdź do artykułu

Abstrakt

Reliable monitoring for detection of damage in epicyclic gearboxes is a serious concern for all industries in which these gearboxes operate in a harsh environment and in variable operational conditions. In this paper, autonomous multidimensional novelty detection algorithms are used to estimate the gearbox’ health state based on vectors of features calculated from the vibration signal. The authors examine various feature vectors, various sources of data and many different damage scenarios in order to compare novel detection algorithms based on three different principles of operation: a distance in the feature space, a probability distribution, and an ANN (artificial neural network)-based model reconstruction approach. In order to compensate for non-deterministic results of training of neural networks, which may lead to different network performance, the ensemble technique is used to combine responses from several networks. The methods are tested in a series of practical experiments involving implanting a damage in industrial epicyclic gearboxes, and acquisition of data at variable speed conditions.
Przejdź do artykułu

Abstrakt

A concept of a highly sensitive and fast-response airborne optoelectronic hygrometer, based on the absorption spectroscopy with laser light tuned to an intense ro-vibronic absorption line of H2O in the 1391– 1393 nm range is presented. The target application of this study is airborne atmospheric measurements, in particular at the top of troposphere and in stratosphere. The cavity ring-down spectroscopy was used to achieve high sensitivity. In order to avoid interference of the results by water desorbed from the instrument walls, the open-path solution was applied. Tests of the instrument, performed in a climatic chamber, have shown some advantages of this concept over typical hygrometers designed for similar applications.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji