Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 156
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Silicon – molybdenum cast iron commonly called SiMo due to its unique properties has becoming more and more interesting engineering material. The history and development of this alloy is relatively long but, due to the significant difficulties during the manufacturing process resulting in the lower final quality than expected, it has not been applied to often in practice. The biggest challenge is its brittleness as a result of the carbides precipitations. During last few years, thanks to the many important researches made and the general foundry technology development, the interest in SiMo iron has been rapidly growing, especially for the castings for heavy duty applications like corrosion, high temperature and wear abrasion resistant parts. In the article the heat treatment attempts to improve the microstructure of SiMo castings has been presented. The goal was to destroy or at least to refine and uniformly distribute the carbides precipitations to improve mechanical properties of the exhaust manifold castings for the cars. The experiments were carried out for the alloy contains approx. 4% Si, 1% Mo and 3.2%C. The range of the research included: hardness measuring, standard mechanical properties and microstructure for as-cast state and after that the subsequent heat treatment process with another properties check. The result of the heat treatment was the elimination of pearlite from the metal matrix. Moreover, the changes of the carbide molybdenum – rich phase morphology were observed. The dispersion of the carbides precipitations in the carbides area was observed. The experiments proved the possibility to control the microstructure and the mechanical properties of the SiMo castings by means of heat treatment but only to some extent.
Przejdź do artykułu

Abstrakt

A measuring system was developed for the measurement of ejector forces in the die casting process. When selecting the sensor technology, particular care was taken to ensure that measurements can be taken with a high sampling rate so that the fast-running ejection process can be recorded. For this reason, the system uses piezoelectric force sensors which measure the forces directly at the individual ejector pins. In this way, depending on the number of sensors, it is possible to determine both the individual ejector forces and the total ejector force. The system is expandable and adaptable with regard to the number and position of the sensors and can also be applied to real HPDC components. Automatic triggering of the measurements is also possible. In addition to the measuring system, a device and a method for in-situ calibration of the sensors have also been developed. To test the measuring system, casting experiments were carried out with a real aluminium HPDC aluminium component. The experiments showed that it is possible to measure the ejector forces with sufficient sampling rate and also to observe the process steps of filling, intensification and die opening by means of ejector forces. Experimental setup serves as a basis for future investigations regarding the influencing parameters on the ejection process.
Przejdź do artykułu

Abstrakt

The research described in this contribution is focused on fractographic analysis of the fracture area of newly developed eutectic silumin type AlSi9NiCuMg0.5 (AA 4032), which was developed and patented by a team of staff of the Faculty of Mechanical Engineering. The paper presents determination of the cause of casting cracks in operating conditions. Fractographic analysis of the fracture area, identification of the structure of the casting, identification of structural components on the surface of the fracture surface and chemical analysis of the material in the area of refraction were performed within the experiment. Al-Si alloys with high specific strength, low density, and good castability are widely used in pressure-molded components for the automotive and aerospace industries. The results shown that the inter-media phases Fe-Al and Fe-Si in aluminium alloys lead to breakage across the entire casting section and a crack that crossed the entire cross section, which was confirmed by EDS analysis.
Przejdź do artykułu

Abstrakt

One of the biggest problems for sand casting foundries must be the waste produced from disposable molds. Stricter environmental regulations make it harder to dispose of waste sand, so a truly competitive foundry does no longer only make great products, but also concentrates on a sustainable casting process. While methods for repurposing waste foundry sand are still limited, the internal circulation of such sands proves significant possibilities. This paper will focus on thermal reclamation of foundry sands in a special rotating drum furnace in a central facility to serve several foundries. Thermal reclamation is a process for handling foundry sands in elevated temperatures to combust unwanted substances from reusable base sand. The introduction focuses on background of the Finnish foundry business, the most common sand systems in Finland and their reclaim properties. The experimental part features presentation of the new reclamation plant process and the conducted test runs. The samples collected from each test run have been laboratory tested to assure proper sand quality. The results of this work showed that the reclamation of alkaline phenolic no-bake sands was excellent. Reclamation of green sands did not provide satisfactory results as expected and the reclamation of furan no-bake sands provided mixed results, as the raw material was imperfect to begin with. The most important result of this work is still the successful initiation of a centralized thermal reclamation plant, with the ability to reclaim sands of several foundries. With this all of industrial symbiosis, circular economy and sustainability advanced in Finland, and the future development of this plant provides even further opportunities and a possibility to spread the ideas on a global scale.
Przejdź do artykułu

Abstrakt

The essence of ablation casting technology consists in pouring castings in single-use moulds made from the mixture of sand and a watersoluble binder. After pouring the mould with liquid metal, while the casting is still solidifying, the mould destruction (washing out, erosion) takes place using a stream of cooling medium, which in this case is water. This paper focuses on the selection of moulding sands with hydrated sodium silicate for moulds used in the ablation casting. The research is based on the use of Cordis binder produced by the Hüttenes-Albertus Company. It is a new-generation inorganic binder based on hydrated sodium silicate. Its hardening takes place under the effect of high temperature. As part of the research, loose moulding mixtures based on the silica sand with different content of Cordis binder and special Anorgit additive were prepared. The reference material was sand mixture without the additive. The review of literature data and the results of own studies have shown that moulding sand with hydrated sodium silicate hardened by dehydration is characterized by sufficient strength properties to be used in the ablation casting process. Additionally, at the Foundry Research Institute in Krakow, preliminary semi-industrial tests were carried out on the use of Cordis sand technology in the manufacture of moulds for ablation casting. The possibility to use these sand mixtures has been confirmed in terms of both casting surface quality and sand reclamation.
Przejdź do artykułu

Abstrakt

The paper presents the cellular automaton (CA) model for tracking the development of dendritic structure in non-equilibrium solidification conditions of binary alloy. Thermal, diffusion and surface phenomena have been included in the mathematical description of solidification. The methodology for calculating growth velocity of the liquid-solid interface based on solute balance, considering the distribution of the alloy component in the neighborhood of moving interface has been proposed. The influence of solidification front curvature on the equilibrium temperature was determined by applying the Gibbs Thomson approach. Solute and heat transfer equations were solved using the finite difference method assuming periodic boundary conditions and Newton cooling boundary condition at the edges of the system. The solutal field in the calculation domain was obtained separately for solid and liquid phase. Numerical simulations were carried out for the Al-4 wt.% Cu alloy at two cooling rates 15 K/s and 50 K/s. Microstructure images generated on the basis of calculations were compared with actual structures of castings. It was found that the results of the calculations are agreement in qualitative terms with the results of experimental research. The developed model can reproduce many morphological features of the dendritic structure and in particular: generating dendritic front and primary arms, creating, extension and coarsening of secondary branches, interface inhibition, branch fusion, considering the coupled motion and growth interaction of crystals.
Przejdź do artykułu

Abstrakt

This article presents measurements of the thickness of alcohol-based coatings on sand foundry cores and moulds. These coatings were applied using two methods, the dipping method and the painting method. For the purposes of the study, a zircon alcohol-based coating was prepared with three different levels of nominal viscosity; very thin at 10s, average at 20s, and thick at 30s. The coating was applied to a core made of quartz sand and furan resin. The cores were made of sand with three different grain sizes; dL = 0.22 mm – fine sand, dL = 0.33 mm medium sand, and dL = 0.47 mm coarse sand. In the study, the thickness of the coating obtained to the core was measured immediately after application as well as after drying. Additionally, the extent of penetration into the intergranular spaces of the core matrix was measured. On the basis of this study, the impact of the grain size of the core matrix on the thickness of the coating and its penetration into the core was assessed. The thickness of coatings obtained using different application methods was also assessed.
Przejdź do artykułu

Abstrakt

The paper presents the theory of constraints (TOC) as a method used to improve results in a complex, multiplants organization. In the article the assumptions of this method has been presented as well as iterative approach concerning how to launch it in practice. Main indicators for organizational effectiveness assessment have also been presented. The maximization of production assets utilization is a key issue for competitive organization in the changing market conditions. An appropriate usage of the theory of constraints enables efficient allocation of financial assets among particular plants within a capital group. An application of a method has been presented based on throughput analyses and its influence to improve financial results of one plant organization and synergy effect in multiplants organization. The theory of constraints can be used in almost every kind of business sectors, among them are metal and foundry industries. It allows to be implemented in production organizations as well as in any other company’s profiles. Everywhere the constraint has been defined there is a chance to achieve an improvement following the presented method. The examples have been taken from the casting plants which use continuous and mold casting technologies. The examples show that TOC approach can be successfully employed as the improvement tool of foundries’ performances.
Przejdź do artykułu

Abstrakt

In the foundry industry, many harmful compounds can be found, which as a result of gradual but long-term exposure to employees bring negative results. One of such compounds is phenol (aromatic organic compound), which its vapours are corrosive to the eyes, the skin, and the respiratory tract. Exposition to this compound also may cause harmful effects on the central nervous system and heart, resulting in dysrhythmia, seizures, and coma. Phenol is a component of many foundry resins, especially used in shell moulds in the form of resincoated sands. In order to identify it, the pyrolysis gas chromatography-mass spectrometry method (Py-GC/MS) was used. The tests were carried out in conditions close to real (shell mould process – temperature 300°C). During the measurement, attention was focused on the appropriate selection of chromatographic analysis conditions in order to best separate the compounds, as it is difficult to separate the phenol and its derivatives. The identification of compounds was based on own standards.
Przejdź do artykułu

Abstrakt

The results of studies presented in this article are an example of the research activity of the authors related to lead-free alloys. The studies covered binary SnZn90 and SnZn95 lead-free alloys, including their microstructure and complex mechanical characteristics. The microstructure was examined by both light microscopy (LM) and scanning electron microscopy (SEM). The identification of alloy chemical composition in micro-areas was performed by SEM/EDS method. As regards light microscopy, the assessment was of both qualitative and quantitative character. The determination of the geometrical parameters of microstructure was based on an original combinatorial method using phase quantum theory. Comprehensive characterization of mechanical behavior with a focus on fatigue life of alloys was performed by means of the original modified low cycle fatigue method (MLCF) adapted to the actually available test machine. The article discusses the fatigue life of binary SnZn90 and SnZn95 alloys in terms of their microstructure. Additionally, the benefits resulting from the use of the combinatorial method in microstructure examinations and MLCF test in the quick estimation of several mechanical parameters have been underlined.
Przejdź do artykułu

Abstrakt

The constantly developing and the broadly understood automation of production processes in foundry industry, creates both new working conditions - better working standards, faster and more accurate production - and new demands for previously used materials as well as opportunities to generate new foundry defects. Those high requirements create the need to develop further the existing elements of the casting production process. This work focuses on mechanical and thermal deformation of moulding sands prepared in hot-box technology. Moulding sands hardened in different time periods were tested immediately after hardening and after cooling. The obtained results showed that hardening time period in the range 30-120 sec does not influence the mechanical deformation of tested moulding sands significantly. Hot distortion tests proved that moulding sands prepared in hot-box technology can be characterized with stable thermal deformation up to the temperature of circa 320oC.
Przejdź do artykułu

Abstrakt

The results of statistical analysis applied in order to evaluate the effect of the high melting point elements to pressure die cast silumin on its tensile strength Rm, unit elongation A and HB were discussed. The base alloy was silumin with the chemical composition similar to ENAC 46000. To this silumin, high melting point elements such as Cr, Mo, V and W were added. All possible combinations of the additives were used. The content of individual high melting point additives ranged from 0.05 to 0.50%. The tests were carried out on silumin with and without above mentioned elements. The values of Rm, A and HB were determined for all the examined chemical compositions of the silumin. The conducted statistical analysis showed that each of the examined high melting point additives added to the silumin in an appropriate amount could raise the values of Rm, A and HB. To obtain the high tensile strength of Rm = 291 MPa in the tested silumin, the best content of each of the additives should be in the range of 0.05-0.10%. To obtain the highest possible elongation A of about 6.0%, the best content of the additives should be as follows: chromium in the range of 0.05-0.15%, molybdenum 0.05% or 0.15%, vanadium 0.05% and tungsten 0.15%. To obtain the silumin with hardness of 117 HB, chromium, molybdenum and vanadium content should be equal to about 0.05%, and tungsten to about 0.5%.
Przejdź do artykułu

Abstrakt

In this work, the effects of 75 mm thick cast iron, (casting mould YIV) composition (Cu) and heat treatment were investigated on the microstructure and mechanical properties (hardness, elongation, tensile strength, yield strength) of ductile iron castings. As a result of adding Cu, the amount of pearlite is at 80% reduces of amount of ferrite. Normalizing of non-alloy cast iron increases the amount of pearlite to 70%. It also, increases tensile strength (659 MPa) and hardness (248 HB). Studied metallographic crossections were made from the grip sections of the tensile specimens. The structure composition and the characteristics of graphite were determined by computer image analysis. Measurements of graphite of non-alloy cast iron after normalizing and in cooper cast iron indicate the approximate amount of precipitates of graphite and their approximate average diameters. The applied normalizing and the additive alloy (Cu) were established to give comparable mechanical properties and structure of matrix in thick-walled castings.
Przejdź do artykułu

Abstrakt

The problem of production flow in steel casting foundry is analysed in this paper. Because of increased demand and market competition, a reorganisation of the foundry process is required, including the elimination of manual labour and the implementation of automation and robotisation of certain processes. The problem is how to determine the real difference in work efficiency between human workers and robots. We show an analysis of the production efficiency of steel casting foundry operated by either human operators or industrial robots. This is a problem from the field of Operations Research for which the Discrete Event Simulation (DES) method is used. Three models are developed, including the foundry before and after automation when taking into consideration parameters of the availability of machines, operators and robots. We apply the OEE (Overall Equipment Effectiveness) indicator to present how the availability, performance and quality parameters influence the foundry’s productivity. In addition, stability of the simulation model was analysed. This approach allows for a better representation of real production processes and the obtained results can be used for further economic analysis.
Przejdź do artykułu

Abstrakt

Measurements of the hardening process course of the selected self-hardening moulding sands with the reclaimed material additions to the matrix, are presented in the hereby paper. Moulding sands were produced on the „Szczakowa” sand (of the Sibelco Company) as the matrix of the main fraction FG 0,40/0,32/0,20, while the reclaim was added to it in amounts of 20, 50 and 70%. Regeneration was performed with a horizontal mechanical regenerator capacity of 10 t/h. In addition, two moulding sands, one on the fresh sand matrix another on the reclaimed matrix, were prepared for comparison. Highly-fluid urea-furfuryl resin was used as a binder, while paratoluensulphonic acid as a hardener. During investigations the hardening process course was determined, it means the wave velocity change in time: cL = f(t). The hardening process kinetics was also assessed (dClx/dt = f(t)). Investigations were carried out on the research stand for ultrasound tests. In addition strength tests were performed.
Przejdź do artykułu

Abstrakt

The determination of the form of a probability density function (PDF3) of diameters for nodular particles by using a probability density function (PDF2), which form is empirically estimated from cross-sections of these nodules in a metallographic specimen, can be regarded as a special case of Wicksell's corpuscle problem (WCP). The estimation of the PDF3 for the nodular particles provides information about the kinetics of these particles nucleation, and so about the kinetics of their growth. This information is essential for building more accurate mathematical models of the alloy crystallization. In the paper there are presented two derivations of the methods used for the estimation of the PDF3 form. The first method bases on diameters received from a planar cross-section. The second one uses also data from the planar cross-section but not the diameters only chords. Both methods provide practical rules for the analysis of the empirical diameters’ and chord’s size distribution and allow to estimate the mean value of the external surface area of the particles.
Przejdź do artykułu

Abstrakt

Characteristics of the microstructure of corrosion-resistant cast 24Cr-5Ni-2.5Mo duplex steel after introduction of 0.98, 1.67 and 4.3% Si were described. Based on the test results it has been found that silicon addition introduced to the corrosion-resistant cast two-phase duplex steel significantly reduces austenite content in the alloy matrix. Increasing silicon content in the test alloy to 4.3% has resulted, in addition to the elimination of austenite, also in the precipitation of Si-containing intermetallic phases at the grain boundaries and inside the grains. The precipitates were characterized by varying content of Cr and Mo, indicating the presence in the structure of more than one type of the brittle phase characteristic for this group of materials. The simulation using Thermo-Calc software has confirmed the presence of ferrite in all tested alloys. In the material containing 4.3% Si, the Cr and Si enriched precipitates, such as G phase and Cr3Si were additionally observed to occur.
Przejdź do artykułu

Abstrakt

The paper presents the effect of pre-heat treatment on the mechanical properties of ductile cast iron with elevated content of Cu and Mo elements. Austempered Ductile Iron is a material with non-standard properties, combining high tensile strength and abrasion resistance with very good plasticity. In addition, it is prone to strain hardening and have good machining abilities. The study was conducted for five designed heat treatment cycles. The variables were the time and temperature of the pre-heat treatment, followed by one of two standard heat treatments for ADI cast iron. The aim of the authors was fragmentation of the grains of perlite during the initial heat treatment. It is presumed, that subsequent heat treatment will cause further refinement of the microstructure than would be the case without initial heat treatment. Diffusion is much faster than in case of ferritic matrix of cast iron. The results will be used to evaluate material for the production of parts of equipment that must operate under extreme load conditions.
Przejdź do artykułu

Abstrakt

The constant growth of foundry modernization, mechanization and automation is followed with growing requirements for the quality and parameters of both moulding and core sands. Due to this changes it is necessary to widen the requirements for the parameters used for their quality evaluation by widening the testing of the moulding and core sands with the measurement of their resistance to mechanical deformation (further called elasticity). Following article covers measurements of this parameter in chosen moulding and core sands with different types of binders. It focuses on the differences in elasticity, bending strength and type of bond destruction (adhesive/cohesive) between different mixtures, and its connection to the applied bonding agent. Moulding and cores sands on which the most focus is placed on are primarily the self-hardening moulding sands with organic and inorganic binders, belonging to the group of universal applications (used as both moulding and core sands) and mixtures used in cold-box technology.
Przejdź do artykułu

Abstrakt

This paper shows how it is possible to obtain an ausferrite in compacted graphite iron (CGI) without heat treatment of castings. Vermicular graphite in cast iron was obtained using Inmold technology. Molybdenum was used as alloying additive at a concentration from 1.6 to 1.7% and copper at a concentration from 1 to 3%. It was shown that ausferrite could be obtained in CGI through the addition of molybdenum and copper in castings with a wall thickness of 3, 6, 12 and 24 mm. Thereby the expensive heat treatment of castings was eliminated. The investigation focuses on the influence of copper on the crystallization temperature of the graphite eutectic mixture in cast iron with the compacted graphite. It has been shown that copper increases the eutectic crystallization temperature in CGI. It presents how this element influences ausferrite microhardness as well as the hardness of the tested iron alloy. It has been shown that above-mentioned properties increases with increasing the copper concentration.
Przejdź do artykułu

Abstrakt

The results of model investigations of the influence of the blowing process selected parameters on the distribution of the compaction of the core made by the blowing method, are presented in the hereby paper. These parameters were: shooting pressure, shooting hole diameter, amount and distribution of deaerating holes. Investigations were performed using the horizontal core box of the cuboidal cavity and the same core box into which inner inserts were introduced. These inserts were dividing the primary volume into three sectors differing in their direction, introduction conditions and the character of the core sand flow. As the compaction measure the apparent sand density was assumed. The density was determined in five measuring points in case of uniform cores, and in three measuring points in case of cores obtained in the core box with three separated sectors. The apparent density of the compacted core sand in the core box cavity was determined on the basis of the measurements of masses and volumes of samples cut-out from the determined core places by means of the measuring probe. Investigations were performed at three values of the working pressure equal 0.4, 0.5 and 0.6MPa for two diameters of the shooting hole: 10 and 20 mm. During tests the core box deaeration, controlled by an activisation of the determined number of deaerating vents placed in the core box, was also subjected to changes.
Przejdź do artykułu

Abstrakt

This article discusses the issue of the preparation of the foundry moulds with the use of an industrial robot. The methodology is presented for the determination of the process capacity index for placing inserts with flat and cylindrical faces. On the basis of the relationships developed, the process capability indices were determined at various points in the workspace, which are characterised by different values of the repeatability positioning error. It was shown that the value of the process capacity index can be increased by the selection of a suitable location for the process of placing the inserts in the workspace. It should also be noted that the value of the process's capability index depends on the selection of the place in the robot workspace where the process is carried out. Implementation of the joining process at an analysed point in the robot workspace leads to an increase of the process capability index MCp for inserts with flat faces up to 1.1 (+4.5%) and for inserts with cylindrical faces up to 1.3. This results in an increase of 13% to a level corresponding to the global standard for process reliability (MCp = 1.33).
Przejdź do artykułu

Abstrakt

Inconel 713C is a nickel-based casting alloy characterised by improved heat and creep resistance [1]. It is used e.g. in aircraft engine components, mainly in the form of precision castings. Precision casting enables very good reproduction of complex shapes. However, due to major differences in casting wall thickness and the resultant differences in rigidity, defects can form in precision castings. The most common defects in precision castings are shrinkage porosities and microcracks. Inconel 713C is considered to be a difficult-to-weld or even non-weldable alloy. However, the need to repair precision castings requires attempts to develop technologies for their remelting and pad welding which could be used in industrial practice. This article presents the results of tests consisting in TIG pad welding of defects identified in precision castings intended for the aircraft industry. It was found that the main reason behind failed attempts at repairing precision castings by welding technologies was hot cracking in the fusion zone. Such cracks form as a result of the partial melting of intercrystalline regions along the fusion line. The deformations occurring during the crystallization of the melting-affected zone (fusion zone + partially melted zone + heat affected zone) or pad weld lead to the rupture of the intercrystalline liquid film. Hot cracks form within the so-called high-temperature brittleness range (HTBR) of the alloy. Another type of cracks that was identified were ductility dip cracks (DDC), whose formation is related to the partial melting of carbides.
Przejdź do artykułu

Abstrakt

The paper presents relationships between the degree of structure fineness and feeding quality of the Al – 20 wt.% Zn (Al-20 Zn) alloy cast into a mould made from sand containing silica quartz as a matrix and bentonite as a binder, and its damping coefficient of the ultrasound wave at frequency of 1 MHz. The structure of the examined alloy was grain refined by the addition of the refining Al-3 wt.% Ti – 0.15 wt.%C (TiCAl) master alloy. The macrostructure analysis of the initial alloy without the addition of Ti and the alloy doped with 50-100 ppm Ti as well as results of damping experiments showed that the structure of the modified alloy is significantly refined. At the same time, its damping coefficient decreases by about 20-25%; however, it still belongs to the so called high-damping alloys. Additionally, it was found that despite of using high purity metals Al and Zn (minimum 99,99% purity), differences in the damping coefficient for samples cut from upper and bottom parts of the vertically cast rolls were observed. These differences are connected with the insufficient feeding process leading to shrinkage porosity as well as gases present in metal charges which are responsible for bubbles of gas-porosity.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji