Search results

Filters

  • Journals
  • Keywords
  • Date
  • Type

Search results

Number of results: 296
items per page: 25 50 75
Sort by:

Abstract

In the paper methods for conducting Road Safety Inspections (SIs) in Italy and Poland are described and compared. The goal of the study is to improve the quality and efficiency of the safety inspections of road network by using low cost equipment (GPS, Tablet, Camera) and specific software. Particular attention was paid to the need for proper calibration of factors, causing traffic safety hazard associated with road infrastructure. The model developed according to the Italian procedures was adapted to comply with the checklists and evaluation criteria of the Polish guidelines. Overall, a good agreement between the two approaches was identified, however some modification was required to include new safety issues, characteristic for the Polish network for safety inspection of two lane rural roads. To test the applicability about 100 km of regional two lane roads in Poland were inspected with Polish and Italian procedures.
Go to article

Abstract

The topic of smart structures, their active control and implementation, is relatively new. Therefore, different approaches to the problem can be met. The present paper discusses variable aspects of the active control of structures. It explains the idea of smart systems, introduces different terms used in smart technique and defines the structural smartness. The author indicates differences between actively controlled structures and structural health monitoring systems and shows an example of an actively controlled smart footbridge. The analyses presented in the study concern tensegrity structures, which are prone to the structural control through self-stress state adjustment. The paper introduces examples of structural control performed on tensegrity modules and plates. An influence of several self-stress states on displacements is analyzed and a study concerning damage due to member loss is presented.
Go to article

Abstract

In calculating the resistance of welds within the connections between hollow sections in EN 1993‒1‒8, very general information is given without presenting specific calculations. The chief recommendations indicate that the resistance of the welds connecting the wall to the second element should not be less than the resistance of the cross section of the wall. In addition, assessment of the welds’ resistance based on the effective lengths is viable in cases when forces in the braces are smaller than the resistance of the joint, though the detailed method was not specified. The objective of this paper is to present the most up-to-date information about the design of overlap welded joints with a reinforcing rib plate.
Go to article

Abstract

These joints are used when the designer and contractor anticipate difficulties during the construction of overlap joints. They were not included in the PN EN 1993‒1‒8 in full scale. Resistance assessment of such joints is presented in accordance with standard rules. The results were compared with the experimental studies carried out at the “Mostostal” Centre; while the former research activities and the legitimacy of the proposed method of assessing the resistance of these joints was confirmed. This is an example of an overlap joint calculation.
Go to article

Abstract

The aim of the study is to compare flexible pavement design lifespans and the main factors which create their values for a standard structure and one with an anti-fatigue course AF at different parameter values of pavement and its load, relevant to their design processes. Depending on the mixture used for the anti-fatigue course or the course thickness, durability improvement of the pavement (compared to the durability of a standard structure) can be obtained by extending the design lifespan of the asphalt base course or by extending the design lifespan of the AF course. On sections with predominantly slow traffic, the lifespan decreases significantly compared to sections with typical vehicle speed – the relative decrease is greater if anti-fatigue course is applied.
Go to article

Abstract

Hard bitumens are used in the construction industry primarily in it’s unmodified form, for instance for the production of the so-called traditional roofing felt. Due to the low price of these types of membranes, the use of a popular but expensive modifying agent, SBS copolymer, is not justified economically. Research carried out by the authors has shown that chemical organic compounds belonging to a group of imidazolines may potentially be used as much cheaper bitumen modifier. It was demonstrated that a new type of modifier based on oleic imidazoline, developed by the authors, has a significant impact on improving the physical properties of bitumen. The use of this modifier results in a significant increase in the bitumen plasticity range, both before and after laboratory ageing .In addition, there was a considerable increase of bitumen’s resistance to aging. Its use can help improve the quality and durability of popular waterproofing products manufactured with the use of hard bitumen.
Go to article

Abstract

The paper considers method of determination of solar radiation amount falling on arbitrarily oriented surface of a structure. Provided method allows calculation of influence of structure’s geographical coordinates, spatial orientation of structure’s surface, day of year and time of day on received amount of solar radiation. The method is intended for determination of thermal stresses and deformations of sheet steel structures caused by action of direct solar radiation. Examples show usage of provided method.
Go to article

Abstract

The paper presents methods of determining the location of cost buffers and corresponding contingency costs in the CPM schedule based on its work breakdown structure. Application of correctly located cost buffers with appropriately established reserve costs is justified by the common overrunning of scheduled costs in construction projects. Interpolated cost buffers (CB) as separate tasks have been combined with relevant summary tasks by the starttostart (SS) relationship, whereas the time of their execution has been dynamically connected with the time of accomplishment of particular summary tasks using the “paste connection” option. Besides cost buffers linked with the group of tasks assigned to summary tasks, a definition of the cost buffer for the entire project (PCB) has been proposed, i.e. as one initial task of the entire project. Contingency costs corresponding to these buffers, depending on the data that the planner has at his disposal, can be determined using different methods, but always depend on the costs of all tasks protected by each buffer. The paper presents an exemplary schedule for a facility and the method of determining locations and cost for buffers CB and PCB, as well as their influence on the course of the curve illustrating the budgeted cost of work scheduled (BCWS). The proposed solution has been adjusted and presented with consideration of the possibilities created by the scheduling software MS Project, though its general assumptions may be implemented with application of other similar specialist tools.
Go to article

Abstract

Probabilistic analysis of a space truss is presented in the paper. Reliability of such a structure is sensitive to geometrical and material imperfections. The objective of this paper is to present a variant of the point estimate method (PEM) to determine mean values and standard deviations of limit loads of engineering structures. The main advantage presented by this method is the small number of sample calculations required to obtain estimators of investigated parameters. Thus the method is straightforward, requiring only preliminaries of probability theory. This approach is illustrated by limit state analysis of a space truss, considering geometric and material imperfections. The calculations were performed for different random models, so the influence of random parameters on the limit load of the truss can be determined. A realistic snow load was imposed.
Go to article

Abstract

The introduction of the sustainable development elements in the construction industry leads to finding new ways of using waste minerals that are difficult in storage and recycling. Coal combustion products have been already introduced into building materials as a part of cement or concrete but they have been thought insufficiently compatible with the polymer-cement binders [7]. The paper presents results of the mechanical properties of polymer-cement composites containing two types of mineral additives: waste perlite powder that is generated during the perlite expanding process, and calcium fly ash which is the byproduct of burning coal in conventional furnaces. Mechanical tests of polymer-cement composites modified with wastes were carried out after 28 and 90 days of curing. As a part of preliminary study specific surface area and particle size distribution of mineral wastes were determined.
Go to article

Abstract

Early detection of potential defects and identification of their location are necessary to ensure safe, reliable and long-term use of engineering structures. Non-destructive diagnostic tests based on guided wave propagation are becoming more popular because of the possibility to inspect large areas during a single measurement with a small number of sensors. The aim of this study is the application of guided wave propagation in non-destructive diagnostics of steel bridges. The paper contains results of numerical analyses for a typical railway bridge. The ability of damage detection using guided Lamb waves was demonstrated on the example of a part of a plate girder as well as a bolted connection. In addition, laboratory tests were performed to investigate the practical application of wave propagation for a steel plate and a prestressed bolted joint.
Go to article

Abstract

A computational approach to analysis of wave propagation in plane stress problems is presented. The initial-boundary value problem is spatially approximated by the multi-node C⁰ displacement-based isoparametric quadrilateral finite elements. To integrate the element matrices the multi-node Gauss-Legendre-Lobatto quadrature rule is employed. The temporal discretization is carried out by the Newmark type algorithm reformulated to accommodate the structure of local element matrices. Numerical simulations are conducted for a T-shaped steel panel for different cases of initial excitation. For diagnostic purposes, the uniformly distributed loads subjected to an edge of the T-joint are found to be the most appropriate for design of ultrasonic devices for monitoring the structural element integrity.
Go to article

Abstract

This paper presents the study of the impact of vibration induced by the movement of the railway rolling stock on the Forum Gdańsk structure. This object is currently under construction and is located over the railway tracks in the vicinity of the Gdańsk Główny and Gdańsk Śródmieście railway stations. The analysis covers the influence of vibrations on the structure itself and on the people within. The in situ measurements on existing parts of the structure allow us to determine environmental excitations used for validation and verification of the derived FEM model. The numerical calculations made the estimates of the vibration amplitudes propagating throughout the whole structure possible.
Go to article

Abstract

The article aims to evaluate the Portuguese building stock energy policies and strategy for energy saving in buildings among the EU members. It was found out the average heat transfer coefficients of the main structural elements of Portuguese Buildings and analyzed the U-values of this elements considering different time periods. The fundamentals of this study were funded by the Agency for Development and Innovation (ADI) and co-financed by the European Regional Development Fund (FEDER) through the Operational Program for Competitiveness Factors (POFC) assigned to the Building Physics and Construction Technology Laboratory with the reference SB Tool SPT_2011_4.
Go to article

Abstract

The paper presents a certain way which determines the critical buckling force for a micro-heterogeneous FGM plate band. A stiffness matrix of an individual cell of such band, different for various cells, has been determined. The obtained matrix can also be treated as a variable stiffness matrix of a “superelement” in the Finite Element Method. A computational algorithm for the critical force as well as the way of testing of its correctness has also been presented. The results obtained for various support conditions have been compared to the values known from the literature. The influence of the number of cells on the critical buckling force has been investigated.
Go to article

Abstract

Considering concrete nonlinearity, the wave height limit between small and large amplitude sloshing is defined based on the Bernoulli equation. Based on Navier-Stokes equations, the mathematical model of large amplitude sloshing is established for a Concrete Rectangle Liquid-Storage Structure (CRLSS). The results show that the seismic response of a CRLSS increases with the increase of seismic intensity. Under different seismic fortification intensities, the change in trend of wave height, wallboard displacement, and stress are the same, but the amplitudes are not. The areas of stress concentration appear mainly at the connections between the wallboards, and the connections between the wallboard and the bottom.
Go to article

Abstract

The paper deals with application of the Gumbel model to evaluation of the environmental loads. According to recommendations of Eurocodes, the conventional method of determining return period and characteristic values of loads utilizes the theory of extremes and implicitly assumes that the cumulative distribution function of the annual or other basic period extremes is the Gumbel distribution. However, the extreme value theory shows that the distribution of extremes asymptotically approaches the Gumbel distribution when the number of independent observations in each observation period from which the maximum is abstracted increases to infinity. Results of calculations based on simulation show that in practice the rate of convergence is very slow and significantly depends on the type of parent results distribution, values of coefficient of variation, and number of observation periods. In this connection, a straightforward purely empirical method based on fitting a curve to the observed extremes is suggested.
Go to article

Abstract

Geomechnical model testing has been widely applied as a kind of research technique in underground engineering problems. However, during the practical application process, due to the influence of many factors, the desired results cannot be obtained. In order to solve this problem, based on the measurement requirements of the model test, combined with FBG(Fiber Bragg Grating) sensor technology and traditional measurement methods, an FBG monitoring system, Micro-multi-point displacement test system, resistance strain test system and surrounding rock pressure monitoring system are developed. Applying the systems to a model test of the tunnel construction process, the displacement in advance laws of tunnel face, radial displacement distribution laws and surrounding rock pressure laws are obtained. Test results show that a multivariate information monitoring system has the advantage of high precision, stability and strong anti-jamming capability. It lays a solid foundation for the real-time data monitoring of the tunnel construction process model test.
Go to article

Abstract

Recycling construction and demolition waste not only reduces project costs; and saves natural resources, but also solves the environmental threat caused by construction waste disposal. In this paper, C25 waste road concrete is used as an experimental material, the uniaxial compression strength and tensile splitting strength of C25 RAC whose coarse aggregate replacement rate is 0%, 25%, 50%, 75%, and 100% are tested under the condition that the water-to-cement ratio is 0.47, 0.55 and 0.61. The results show: (1) the uniaxial compression strength and tensile splitting strength decrease with the increase of RAC; (2) for concrete with the same water-to-cement ratio, when the coarse aggregate replacement rate changes from 0% to 50%, the uniaxial compression strength and tensile splitting strength of RAC changes slightly. When the coarse aggregate replacement rate changes from 50% to 100%, the uniaxial compression strength and tensile splitting strength of RAC decreases rapidly
Go to article

This page uses 'cookies'. Learn more