Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy publikacji
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 180
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

In the present work the results of the investigations on dead zone formation conditions in catalyst pellet are discussed. A new, simple method of determining the types of kinetic equations for which such a zone can appear was developed on the basis of simple mathematical transformations. It was shown that: (i) pellet geometry has no influence on necessary conditions of the origination of dead zone (ii) only driving-force term (in the sense of Langmuir-Hinshelwood-Hougen-Watson kinetic approach) decides if a dead zone is formed. A new algorithm which allows fast and precise evaluation of critical Thiele modulus Fcrit (in a catalyst pellet for F>Fcrit the dead zone appears) was proposed and tested.
Przejdź do artykułu

Abstrakt

Optimal feed temperature was determined for a non-isothermal fixed-bed reactor performing hydrogen peroxide decomposition by immobilized Terminox Ultra catalase. This feed temperature was obtained by maximizing the average substrate conversion under constant feed flow rate and temperature constraints. In calculations, convection-diffusion-reaction immobilized enzyme fixed-bed reactor described by a set of partial differential equations was taken into account. It was based on kinetic, hydrodynamic and mass transfer parameters previously obtained in the process of H2O2 decomposition. The simulation showed the optimal feed temperature to be strongly dependent on hydrogen peroxide concentration, feed flow rate and diffusional resistances expressed by biocatalyst effectiveness factor.
Przejdź do artykułu

Abstrakt

The paper discusses the feasibility, effectiveness and validity of a gas turbine power plant, operated according to the Brayton comparative cycle in order to develop low-potential waste heat (160◦C) and convert it into electricity. Fourteen working fluids, mainly with organic origin have been examined. It can be concluded that low molecular weight working fluids allow to obtain higher power efficiency of Brayton cycle only if conversions without taking into account internal losses are considered. For the cycle that takes into account the compression conversion efficiency in the compressor and expansion in the gas turbine, the highest efficiency was obtained for the perfluoropentane working medium and other substances with relatively high molecular weight values. However, even for the cycle using internal heat recovery, the thermal efficiency of the Brayton cycle did not exceed 7%.The paper discusses the feasibility, effectiveness and validity of a gas turbine power plant, operated according to the Brayton comparative cycle in order to develop low-potential waste heat (160◦C) and convert it into electricity. Fourteen working fluids, mainly with organic origin have been examined. It can be concluded that low molecular weight working fluids allow to obtain higher power efficiency of Brayton cycle only if conversions without taking into account internal losses are considered. For the cycle that takes into account the compression conversion efficiency in the compressor and expansion in the gas turbine, the highest efficiency was obtained for the perfluoropentane working medium and other substances with relatively high molecular weight values. However, even for the cycle using internal heat recovery, the thermal efficiency of the Brayton cycle did not exceed 7%.
Przejdź do artykułu

Abstrakt

The Organic Flash Cycle (OFC) is suggested as a vapor power cycle that could potentially improve the efficiency of utilization of the heat source. Low and medium temperature finite thermal sources are considered in the cycle. Additionally the OFC’s aim is to reduce temperature difference during heat addition. The study examines 2 different fluids. Comparisons are drawn between the OFC and an optimized basic Organic Rankine Cycle (ORC). Preliminary results show that ethanol and water are better suited for the ORC and OFC due to higher power output. Results also show that the single flash OFC achieves better efficiencies than the optimized basic ORC. Although the OFC improves the heat addition exergetic efficiency, this advantage was negated by irreversibility introduced during flash evaporation.
Przejdź do artykułu

Abstrakt

The article presents a zero-dimensional mathematical model of a tubular fuel cell and its verification on four experiments. Despite the fact that fuel cells are still rarely used in commercial applications, their use has become increasingly more common. Computational Flow Mechanics codes allow to predict basic parameters of a cell such as current, voltage, combustion composition, exhaust temperature, etc. Precise models are particularly important for a complex energy system, where fuel cells cooperate with gas, gas-steam cycles or ORCs and their thermodynamic parameters affect those systems. The proposed model employs extended Nernst equation to determine the fuel cell voltage and steadystate shifting reaction equilibrium to calculate the exhaust composition. Additionally, the reaction of methane reforming and the electrochemical reaction of hydrogen and oxygen have been implemented into the model. The numerical simulation results were compared with available experiment results and the differences, with the exception of the Tomlin experiment, are below 5%. It has been proven that the increase in current density lowers the electrical efficiency of SOFCs, hence fuel cells typically work at low current density, with a corresponding efficiency of 45–50% and with a low emission level (zero emissions in case of hydrogen combustion).
Przejdź do artykułu

Abstrakt

The aim of the present work is to verify a numerical implementation of a binary fluid, heat conduction dominated solidification model with a novel semi-analytical solution to the heat diffusion equation. The semi-analytical solution put forward by Chakaraborty and Dutta (2002) is extended by taking into account variable in the mushy region solid/liquid mixture heat conduction coefficient. Subsequently, the range in which the extended semi-analytical solution can be used to verify numerical solutions is investigated and determined. It has been found that linearization introduced to analytically integrate the heat diffusion equation impairs its ability to predict solidus and liquidus line positions whenever the magnitude of latent heat of fusion exceeds a certain value.
Przejdź do artykułu
Słowa kluczowe combustion CFD emission boiler NOx

Abstrakt

The primary methods of reducing nitrogen oxides, despite the development of more advanced technologies, will continue to be the basis for NOx reduction. This paper presents the results of multivariate numerical studies on the impact of air staging on the flue gas temperature and composition, as well as on NOx emissions in a OP 230 boiler furnace. A numerical model of the furnace and the platen superheater was validated based on measurements using a 0-dimensional model of the boiler. Numerical simulations were performed using the ANSYS Workbench package. It is shown that changes in the distribution of air to OFA nozzles, the angle of the air outflow from the nozzles and the nozzle location involve a change in the flue gas temperature and in the volume of NOx and CO emissions at the furnace outlet.
Przejdź do artykułu

Abstrakt

This paper presents an effect of general dimensions of a reverse flow mini-cyclone with a tangential inlet on its separation efficiency. Several mini-cyclone design modifications are presented and evaluated for use in the air filtration systems of motor vehicles. Local design improvements of three components of a reverse flow mini-cyclone with a tangential inlet D-40 of an air filter fitted in an all-terrain vehicle engine were introduced. An asymmetric curvilinear shape of an outlet port was used instead of a symmetrical shape. An outlet vortex finder inlet port shape was streamlined, and a cylindrical outlet vortex finder of the cyclone was replaced with a conical one. Experimental evaluation of the effects of the design improvements of mini-cyclone on its separation efficiency and performance as well as flow resistance was carried out. Separation efficiency of the cyclone was determined using the mass method as a product of dust mass retained by the mini-cyclone and supplied to the mini-cyclone in a specified time. Separation performance of the cyclone was determined as the largest dust particle dz =dzmax in a specific test cycle in the cyclone outlet air stream. A polydisperse PTC-D test dust used in Poland, a substitute for AC-fine test dust was used. Dust concentration at the mini-cyclone inlet was kept at 1 g/m3. The size and total number of dust particles in the air stream at the outlet of the original mini-cyclone and at the outlet of the improved mini-cyclone was determined using a particle counter.
Przejdź do artykułu

Abstrakt

Silica multichannel monoliths modified with zirconia, titania and alumina have been used as reactive cores of microreactors and studied in chemoselective reduction (MPV) of cyclohexanon/benzaldehyde with 2-butanol as a hydrogen donor. The attachment of metal oxides to the silica surface was confirmed by FT–IR spectroscopy, and dispersion of metal oxides was studied by UV–Vis spectroscopy. the catalytic activity of the lewis acid centres in both chemical processes decreased in the order zirconia > alumina > titania. This activity is in good agreement with dispersion and coordination of metal species. good stability of zirconia-grafted reactors was confirmed. high porosity of the monoliths and the presence of large meandering flow-through channels with a diameter of ca. 30 mm facilitate fluid transport and very effective mixing in the microreactors. The whole synthesis process is perfectly in line with trends of modern flow chemistry
Przejdź do artykułu

Abstrakt

The work contains a description of a developed experimental and theoretical method of modeling of solid waste combustion in a device equipped with a moving grate and capability to optimize the work of waste incineration plant. Implementation of this issue was based on results of experimental studies made on a laboratory scale boiler. This was possible by defining and testing indicators of quantitative assessment of combustion such as: reaction front rate, ignition rate, the rate of combusted mass loss and the heat release rate. These indicators as measurable "criteria indicators" allow transfer of parameters from a laboratory-scale unit, working in the transient regime into an industrial full scale grate device working continuously in stable determined conditions. This allows for wide optimization possibilities in the operation of a waste incineration plant, in particular the combustion chamber, equipped with a moving grate system.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji