Search results

Filters

  • Journals

Search results

Number of results: 17
items per page: 25 50 75
Sort by:

Abstract

The paper discusses in detail the construction of the Core Less Axial Flux Permanent Magnet generator simulation model. The model has been prepared in such a way that full compatibility with the elements of the SimPowerSystem library of the Matlab/Simulink package is preserved, which allows easy use of the presented simulation model for testing the work of the generator as part of a larger system. The parameters used in the model come from the MES 3D calculations performed in the Ansys/Maxwell software, for a machine prototype with a rated power of 2.8 kW, which was then used to experimentally verify the correct operation of the presented model of machine.
Go to article

Abstract

In renewable systems, there may be conditions that can be either network error or power transmission line and environmental conditions such as when the wind speed is unbalanced and the wind turbine is connected to the grid. In this case, the control system is not damaged and will remain stable in the power transmission system. Voltage stability studies on an independent wind turbine at fault time and after fixing the error is one of the topics that can strengthen the future of independent collections. At the time of the fault, the network current increases dramatically, resulting in a higher voltage drop. Hence the talk of fast voltage recovery during error and after fixing the error and protection of rotor and grid side converters against the fault current and also protection against rising DC voltage (which sharply increases during error) is highly regarded. So, several improvements have been made to the construction of a doubly-fed induction generator (DFIG) turbine such as: a) error detection system, b) DC link protection, c) crow bar circuit, d) block of the rotor and stator side converters, e) injecting reactive power during error, f) nonlinear control design for turbine blades, g) tuning and harmonization of controllers used to keep up the power quality and to stabilize the system output voltage in the power grid. First, the dynamic models of a wind turbine, gearbox, and DFIG are presented. Then the controllers are modeled. The results of the simulation have been validated in MATLAB/Simulink.
Go to article

Abstract

In a PV-dominant DC microgrid, the traditional energy distribution method based on the droop control method has problems such as output voltage drop, insufficient power distribution accuracy, etc. Meanwhile, different battery energy storage units usually have different parameters when the system is running. Therefore, this paper proposes an improved control method that introduces a reference current correction factor, and a weighted calculation method for load power distribution based on the parameters of battery energy storage units is proposed to achieve weighted allocation of load power. In addition, considering the variation of bus voltage at the time of load mutation, voltage secondary control is added to realize dynamic adjustment of DC bus voltage fluctuation. The proposed method can achieve balance and stable operation of energy storage units. The simulation results verified the effectiveness and stability of the proposed control strategy.
Go to article

Abstract

The uncontrolled rectifier and controlled rectifier which use fixed switching frequency control strategy are applied usually during the working of a high-power high- speed permanent magnet generator (HSPMG). Even for the controlled rectifier, it will generate harmonics. The electromagnetic performance of the HSPMG is also affected by these harmonics. In this paper, the influences of the fixed switching frequency control strategy on a HSPMG were studied. Based on the Fourier theory, the harmonic currents of the generator were analyzed, and the change of harmonic distribution range and current total harmonic distortion (THD) were obtained. By using an indirect field-circuit coupling method, the influences of the fixed switching frequency control strategy on the losses and torque of the generator were analyzed. The relations between the switching frequency and the losses and torque of the generator were obtained, and the change mechanism of the loss was revealed. The obtained conclusions can provide reference for the optimized choice of the switching frequency of the distributed generation system with the HSPMG. It can also provide support for the HSPMG electromagnetic structural optimization and the optimization of the loss and harmonic on the system level.
Go to article

Abstract

Induction surface hardening means the hardening of a thin zone of the material only, while its core remains soft. The paper deals with the modelling of the Consecutive Dual Frequency Induction Hardening (CDFIH) of gear wheels and its validation. For gear wheels with modulus m smaller than 6 mm a contour profile of hardness distribution could be obtained. The investigated gear wheel is heated first by a medium frequency inductor to the temperature approximately equal to the modified lower temperature Ac1m. It means beginning of the austenite transformation. Then the gear wheel is heated by the high frequency inductor to the hardening temperature making it possible to complete the austenite transformation and immediately cooled. In order to design the process it is necessary to identify modified critical temperatures and to obtain expected temperature distribution within the whole tooth.
Go to article

Abstract

The paper recapitulates recently conducted investigations of non-proportional Luenberger observers, applied to reconstruction of state variables of induction motors. Three structures of non-proportional observers are analyzed, a proportional-integral observer, modified integral observer and observer with integrators. Criteria for gain selection of the observer are described, classical ones based on poles, as well as additional, increasing observer’s robustness. Fulfilment of the presented criteria can be ensured with the three proposed methods for gain selection, two analytical, based on dyadic transformation and one based on optimization.
Go to article

Abstract

Solar energy is widely available in nature and electricity can be easily extracted using solar PV cells. A fuel cell being reliable and environment friendly becomes a good choice for the backup so as to compensate for continuously varying solar irradiation. This paper presents simple control schemes for power management of the DC microgrid consisting of PV modules and fuel cell as energy sources and a hydrogen electrolyzer system for storing the excess power generated. The supercapacitor bank is used as a short term energy storage device for providing the energy buffer whenever sudden fluctuations occur in the input power and the load demand. A new power control strategy is developed for a hydrogen storage system. The performance of the system is assessed with and without the supercapacitor bank and the results are compared. A comparative study of the voltage regulation of the microgrid is presented with the controller of the supercapacitor bank, realized using a traditional PI controller and an intelligent fuzzy logic controller.
Go to article

Abstract

The paper presents optimization of power line geometrical parameters aimed to reduce the intensity of the electric field and magnetic field intensity under an overhead power line with the use of a genetic algorithm (AG) and particle swarm optimization (PSO). The variation of charge distribution along the conductors as well as the sag of the overhead line and induced currents in earth wires were taken into account. The conductor sag was approximated by a chain curve. The charge simulation method (CSM) and the method of images were used in the simulations of an electric field, while a magnetic field were calculated using the Biot–Savart law. Sample calculations in a three-dimensional system were made for a 220 kV single – circuit power line. A comparison of the used optimization algorithms was made.
Go to article

Abstract

Comparison of the electromagnetic performance of a flux-switching permanent magnet (PM) machine having two separate stators as well as different winding topologies is investigated in this paper. Different stator and rotor pole combinations of these machines are also considered. The analysis includes the open-circuit and on-load characteristics of the analyzed machines. It is observed that, the largest fundamental values of electromagnetic torque, for each winding topology, is seen in the 11-rotor-pole and 10-rotor-pole machines having alternate- and all-pole-wound configurations, respectively. Moreover, significant ripple is observed in the waveforms of the even-number rotor pole machines compared to their corresponding odd-number rotor pole counterparts. Overall, the alternate-pole-wound machines essentially have larger torque-density than their equivalent all-pole-wound ones. The investigated machine is also tested for validation.
Go to article

Abstract

The matrix converter is a new generation of power electronic converters and is an alternative to back-to-back converters in applications that dimensions and weight are important. In this paper, a simple control algorithm for a three-phase asynchronous motor based on a direct torque control technique, which is fed through a three-phase direct matrix converter, is presented. For direct matrix converters, 27 switching modes are possible, which using the predictive control technique and for the different modes of the matrix converter, the motor behavior is estimated at the next sampling interval. Then the objective function is determined and the optimal possible mode is selected. Finally, the best switching mode is applied to the direct matrix converter. In order to evaluate the proposed method, simulation of the system in Matlab/Simulink software environment is performed. The results show the effectiveness of the proposed method.
Go to article

Abstract

An analysis of a given electrical circuit using a fractional derivative. The statespace equation was developed. The dynamics of tensions described by Kirchhoff’s laws equations. The paper used the definition of the integral derivative Caputo and CDF conformable fractional definition. An electrical circuit solution using Caputo and CDF defini- tions for rectangular with zero initial conditions was developed. The results obtained using the Caputo and CDF definitions were compared. The solutions are shown for capacitor voltages, for fractional derivative orders of 0.6, 0.8, 1. The results were compared using graphs.
Go to article

Abstract

Safety and operation efficiency of the particle accelerators strongly depend on the quality of the supplied electric current and is affected by the electric properties of all elements of the circuit. In this paper the capacitance of the superconducting bus-bars applied in the cryogenic by-pass line for the SIS100 particle accelerator at FAIR is analysed. The unit capacitance of the bus-bars is calculated numerically and found experimentally. A 2D numerical model of a cross-section of the cable is applied. The capacitance is found with three methods. The stored energy, electric displacement field and charge gathered on the surfaces of the device are calculated and analysed. The obtained values are consistent. Experimental measurements are performed using the resonance method. The measuring system is undamped using a negative conductance converter. Small discrepancies are ob- served between numerical and experimental results. The obtained values are within the requirements of the accelerator design.
Go to article

Abstract

The BeiDou navigation satellite system (BDS) is one of the four global navigation satellite systems. More attention has been paid to the positioning algorithm of the BDS. Based on the study on the Kalman filter (KF) algorithm, this paper proposed a novel algorithm for the BDS, named as the minimum dispersion coefficient criteria Kalman filter (MDCCKF) positioning algorithm. The MDCCKF algorithm adopts minimum dispersion coefficient criteria (MDCC) to remove the influence of noise with an alpha-stable distribution (ASD) model which can describe non-Gaussian noise effectively, especially for the pulse noise in positioning. By minimizing the dispersion coefficient of the positioning error, the MDCCKF assures positioning accuracy under both Gaussian and non-Gaussian environment. Compared with the original KF algorithm, it is shown that the MDCCKF algorithm has higher positioning accuracy and robustness. The MDCCKF algorithm provides insightful results for potential future research.
Go to article

Abstract

This paper proposes a self-excited induction generator model with saturation effect for power generating mode in a remote site. The model is led through the space vector mathematical formalism and allows one to analyze the steady and dynamic states. It is developed for a squirrel cage induction machine. This model provides magnetizing inductance variation able to influence the build-up and the stabilization of voltage generation when the load changes. The final result is a realistic approach model which takes into con- sideration the dependency of the magnetizing inductance versus magnetizing current. This novel model is validated through experimental measurements to demonstrate its validity and practicability.
Go to article

Abstract

An analysis of the influence of inverter PWM speed control methods on the operation of a brushless DC (BLDC) motor was carried out. Field-circuit models of the BLDC motor were developed taking into account rotational speed control by two classic methods: the unipolar H_ON_L_PWM and the bipolar H_PWM_L_PWM. Waveforms of the electrical and mechanical quantities and the motor parameters were computed. The results of the computations were verified by measurements performed on a specially designed test stand. On the basis of the measuredwaveforms of the electrical and mechanical quantities the dependence of the drive system efficiencies and power losses on rotational speed was determined for the two methods of inverter control.
Go to article

Abstract

With the increasing penetration rate of grid-connected renewable energy generation, the problem of grid voltage excursion becomes an important issue that needs to be solved urgently. As a new type of voltage regulation control method, electric spring (ES) can alleviate the fluctuations of renewable energy output effectively. In this paper, the background and basic principle of the electric spring are introduced firstly. Then, considering the influence of an electric spring on noncritical load voltage, noncritical loads are classified reasonably, and based on the electric spring phasor diagram, the control method to meet the noncritical load voltage constraint is proposed. This control method can meet the requirements of voltage excursions of different kinds of noncritical load, increase the connection capacity of the noncritical load and improve the voltage stabilization capacity of the electric spring. Finally, through the simulation case, the feasibility and validity of electric spring theory and the proposed control method are verified.
Go to article

Abstract

In order to develop a PM BLDC motor control system, which will be tolerant of selected faults, simulation work was first performed and then verified on a universal test stand. The results were published in earlier works. The next stage of works was the implementation of previously developed algorithms on the target research test stand – in this case, the prototype vehicle. This last stage of the laboratory work has been presented in this article, i.e. it has been presented the results of experimental research related to the reproduction of rotor angle position, used after the detection of a rotor position sensor fault. A new test stand with the laboratory prototype of a vehicle with two PM BLDC motors is presented. A zeroth-order algorithm (ZOA) was used as a fault compensation method. The effectiveness and usefulness of the previously proposed methods have been confirmed.
Go to article

This page uses 'cookies'. Learn more