Search results

Filters

  • Journals

Search results

Number of results: 62
items per page: 25 50 75
Sort by:

Abstract

Powdered polyaniline (PANI) was synthesised chemically with different doping anions namely hydrochloric acid, sulphuric acid and para-toluenesulfonic acid (pTSA). Two-step synthetic procedure was utilised at low temperature. The highest reaction efficiency was found for chlorine-doped PANI. Structural characterization with FTIR revealed the vibration bands characteristic to formation of the emeraldine salt. The surface morphology of doped PANIs was studied by SEM images which showed near globular shape and porous structures with different size of the aggregated particles. They were smaller for Cl–- or pTS–-doped PANI while for SO42– the size was markedly larger. The XRD patterns revealed that there are ordered regions especially for pTS– doped PANI, while the highest conductivity value was recorded for Cl– doped one followed by organic pTS– doped and SO42– doped one.
Go to article

Abstract

The aim of the paper is the residual stress analysis of AlSi10Mg material fabricated by selective laser melting (SLM). The SLM technique allows to product of complex geometries based on three-dimensional model, in which stiffness and porosity can be precisely designed for specific uses. As the studied material, there were chosen solid samples built in two different directions: parallel (P-L) and perpendicular (P-R) to the tested surface and cellular lattice built in perpendicular direction, as well. In the paper, for the complex characterization of obtained materials, the phase analysis, residual stress and texture studies were performed. The classical non-destructive sin2ψ method was used to measure the residual stress measurements. The final products, both solid sample and cellular lattice, have a homogeneous phase composition and consist of solid solution Al(Si) (Fm-3m) type, Si (Fd-3m) and Mg2Si (Pnma). The obtained values of the crystallite size are in a range of 1000 Å for Al(Si), 130-180 Å for Si phase. For Mg2Si phase, the crystallite sizes depend on sintering process, they are 800 Å for solid samples and 107 Å for cellular lattice. The residual stress results have the compressive character and they are in a range from –5 to –15 MPa.
Go to article

Abstract

The paper presents the results of research on the modification of the face geometry of the refill friction stir spot welding tool sleeve for welding thin aluminum sheets with an Alclad and an oxide anode coating. The analysis of the impact of such modification on the process perform (tool motion parameters, temperature) and microstructure as well as mechanical strength of the lap joints were analyzed. The tests were carried out using aluminum alloy 2024-T3 sheets with thickness 1.27 mm. For comparative purposes, joints were also made using plates without an Alclad and without anodized coating with using unmodified tool and modified tools with developed 3 variants of face geometry. The samples with the joint were subjected to metallographic and strength tests. It has been shown that the use of modified geometry has a decisive influence on the performance of the process and the effect of softening and mixing of materials in the zone of point connection.
Go to article

Abstract

Uniaxial tensile tests were performed on porcine skin to investigate the tensile stress-strain constitutive characteristic at quasistatic deformations using uniaxial tensile tests. Experimental results were then used to determine the parameters of the various constitutive model types for rubber, including the Mooney-Rivlin, Yeoh, Ogden, and others. The Prony series viscoelastic model was also calibrated based on the stress relaxation test. To investigate the calibrated constitutive equations (visco-hyperelastic), the falling impact test was conducted. From the viewpoint of the maximum impact load, the error was approximately 15.87%. Overall, the Ogden model predicted the experimental measurements most reasonably. The calibrated constitutive model is expected to be of practical use in describing the mechanical properties of porcine skin.
Go to article

Abstract

Considering the advantages of hollow fiber supported liquid membrane (HFSLM), it has been applied for extraction of Co(II) with a motivation to extract cobalt from various waste resources. Extraction efficiency and transport behavior of Co(II) through HFSLM containing Cyanex 272 diluted in kerosene were investigated. Experiments were performed as a function of aqueous feed solution velocity (1000 mL/min) for both feed and strip, pH of feed solution in the range of 4.00-6.75, the carrier concentration of 25-1000 mol/m3, and acid concentration in strip solution of 1-500 mol/m3on. The mass transfer rate or flux JCo(II), which is a function of metal concentration, volume of solution, and membrane area were analyzed. The optimum condition for extraction of Co(II) was pH of 6.00, Cyanex 272 concentration of 500 mol/m3 and H2SO4 concentration of 100 mol/m3.
Go to article

Abstract

In this study, agar-based nanocomposite films containing ultra-porous silica aerogel particles were fabricated by gel casting using an aqueous agar/silica aerogel slurry. The silica aerogel particles did not show significant agglomeration and were homogeneously distributed in the agar matrix. Transmission electron microscopy observations demonstrated that the silica aerogel particles had a mesoporous microstructure and their pores were not incorporated into the agar polymer molecules. The thermal conductivities of the agar and agar/5 wt.% silica aerogel nanocomposite films were 0.36 and 0.20 W·m–1·K–1, respectively. The transmittance of the agar films did not decrease upon the addition of silica aerogel particles into them. This can be attributed to the anti-reflection effect of silica aerogel particles.
Go to article

Abstract

Trace elements Co, Cr were added to investigate their influence on the microstructure and physical properties of Al-Si extruded alloy. The Co, Cr elements were randomly distributed in the matrix, forms intermetallic phase and their existence were confirmed by XRD, EDS and SEM analysis. With addition of trace elements, the microstructure was modified, Si particle size was reduced and the growth rate of β-(Al5FeSi) phase limited. Compared to parent alloy, hardness and tensile strength were enhanced while the linear coefficient of thermal expansion (CTE) was significantly reduced by 42.4% and 16.05% with Co and Cr addition respectively. It is considered that the low CTE occurs with addition of Co was due to the formation of intermetallic compound having low coefficient of thermal expansion. The results suggested that Co acts as an effective element in improving the mechanical properties of Al-Si alloy.
Go to article

Abstract

The effects of carbon content on the austenite stability and strain-induced transformation of nanocrystalline Fe-11% Ni alloys were investigated using X-ray analysis and mechanical tests. The nanocrystalline FeNiC alloy samples were rapidly fabricated using spark plasma sintering because of the extremely short densification time, which not only helped attain the theoretical density value but also prevented grain growth. The increased austenite stability resulted from nanosized crystallites in the sintered alloys. Increasing compressive deformation increased the volume fraction of strain-induced martensite from austenite decomposition. The kinetics of the strain-induced martensite formation were evaluated using an empirical equation considering the austenite stability factor. As the carbon content increased, the austenite stability was enhanced, contributing to not only a higher volume fraction of austenite after sintering, but also to the suppression of its strain-induced martensite transformation.
Go to article

Abstract

The grain boundary wetting phase transition in an industrial EZ33A cast alloy is studied. 12% of the grain boundaries are completely wetted at the temperature slightly higher than the eutectic transformation temperature (530°C). The fraction of wetted grain boundaries increases with temperature, reaches a maximum of 85% at 570°C, and does not change further until the alloy melts. In the as-cast state, the alloy has low ductile properties at the ambient temperature. The microstructure in the as-cast state corresponds to the wetting state at about 560°C, which indicates that the cooling rate in casting is almost equal to that in quenching. The volume and the surface fraction of the second phase and the hardness measured at the least wetted state of samples point to its good machinability. The wetting data are used to suggest a sequence of heat treatment and machining for processing EZ33A alloy parts.
Go to article

Abstract

Microstructures and mechanical properties of as-cast Al-6.5Mg-1.5Zn-0.5Fe alloys newly alloy-designed for the parts of automobile were investigated in detail. The aluminum (Al) sheets of 4 mm thickness, 30 mm width and 100 mm length were reduced to a thickness of 1mm by multi-pass rolling at ambient temperature and subsequently annealed for 1h at 200~500°C. The as-cast Al sheet was deformed without a formation of so large cracks even at huge rolling reduction of 75%. The recrystallization begun to occur at 250°C, it finished at 350°C. The as-rolled material showed tensile strength of 430 MPa and tensile elongation of 4.7%, however the specimen after annealing at 500°C showed the strength of 305 MPa and the elongation of 32%. The fraction of high angle grain boundaries above 15 degree increased greatly after annealing at high temperatures. These characteristics of the specimens after annealing were discussed in detail.
Go to article

Abstract

439L stainless steel composites blended with fifteen micron SiC particles were prepared by uniaxial pressing of raw powders at 100 MPa and conventional sintering at 1350oC for 2 h. Based on the results of X-ray diffraction analysis, dissolution of SiC particles were apparent. The 5 vol% SiC specimen demonstrated maximal densification (91.5%) among prepared specimens ­(0-10 vol% SiC); the relative density was higher than the specimens in the literature (80-84%) prepared by a similar process but at a higher forming pressure (700 MPa). The stress-strain curve and yield strength were also maximal at the 5 vol% of SiC, indicating that densification is the most important parameter determining the mechanical property. The added SiC particles in this study did not serve as the reinforcement phase for the 439L steel matrix but as a liquid-phase-sintering agent for facilitating densification, which eventually improved the mechanical property of the sintered product.
Go to article

Abstract

In this study, we investigated the bonding mechanism of surface-treated steel with an Al-Si alloy in order to produce steel-aluminum (STL-Al) hybrid composite materials by cast-bonding. The results showed that there are differences in the phase and properties of the hybrid composite materials bonded specimens depending on the surface treatment of the steel sheet used, and that the bonding conditions can be controlled further by detailed conditions of the surface treatment. Based on the interfacial bonding strengths measured here, the galvanized surface treatment induced metallurgical bonding to form a reaction layer on the bonding surface and was determined to be the most effective surface treatment.
Go to article

Abstract

Cu-Ni composite nanoparticles were successfully synthesized by electrical explosion of wire (EEW) method. Cu-Ni alloy and twisted wires with various Ni contents were used as the feeding material for a 3 kV charging voltage EEW machine in an ethanol ambient chamber. The phase structure and magnetic properties of the as-fabricated samples were studied. It was established that the prepared powders after drying have a spherical form with the particle size is under 100 nm. XRD analysis indicated that the nanopowders consisted of binary Cu-Ni phases. Only pure phases of the intermetallic compound Cu-Ni (Cu0.81Ni0.19 and Cu3.8Ni) were observed in the XRD patterns of the samples. The synthesized intermetallic Cu-Ni alloy nanopowders reveal magnetic behaviors, however, the lower Ni content samples exhibited paramagnetic behaviors, meanwhile, the higher Ni content samples exposed ferromagnetic properties.
Go to article

Abstract

In this study, molten salt electrorefining was used to recover indium metal from In-Sn crude metal sourced from indium tin oxide (ITO) scrap. The electrolyte used was a mixture of eutectic LiF-KF salt and InF3 initiator, melted and operated at 700°C. Voltammetric analysis was performed to optimize InF3 content in the electrolyte, and cyclic voltammetry (CV) was used to determine the redox potentials of In metal and the electrolyte. The optimum initiator concentration was 7 wt% of InF3, at which the diffusion coefficients were saturated. The reduction potential was controlled by applying constant current densities of 5, 10, and 15 mA/cm2 using chronopotentiometry (CP) techniques. In metal from the In-Sn crude melt was deposited on the cathode surface and was collected in an alumina crucible.
Go to article

Abstract

The present study, aims to investigate the effect of minor Zr and Nb alloying on soft magnetic and electrical properties of Fe86(ZrxNb1-x)7B6Cu1 (x = 1, 0.75, 0.5, 0.25) alloys. The investigated alloys were prepared through the melt spinning process. Within the examined compositional range (Nb up to 5.25at%, respectively), the soft magnetic properties and electrical resistivity of the alloys continuously increase with increasing Nb content. However increasing the Nb content further decreases such properties. We could confirm the influence of ratio of Zr and Nb on grain growth and crystallization fraction during crystallization by using the soft magnetic properties and electrical properties.
Go to article

Abstract

The article discusses the development of an approximation model of selected plastic and mechanical properties obtained from compression tests of model materials used in physical modeling. The use of physical modeling with the use of soft model materials such as a synthetic wax branch with various modifiers is a popular tool used as an alternative or verification of numerical modeling of bulk metal forming processes. In order to develop an algorithm to facilitate the choice of material model to simulate the behavior of real-metallic materials used in industrial production processes the induction of decision trees was used. First of all, the Statistica program was used for data mining, which made it possible to determine / find the relationship between the percentage of particular constituents of the model material (base material and modifiers) and yield strength, critical and maximum strain, and provide the opportunity to indicate the most important variables determining the shape of the stress – strain curve. Next, using the induction of decision trees, an approximation model was developed, which allowed to create an algorithm facilitating the selection of individual modifying components. The last stage of the research was verification of the correctness of the developed algorithm. The obtained research results indicate the possibility of using decision tree induction to approximate selected properties of modeling materials simulating the behavior of real materials, thus eliminating the need for costly and time-consuming experiments carried out on metallic material.
Go to article

Abstract

Snap-fit connections have been used for many years in various fields of technology and everyday objects. They often have complex shapes, which is allowed by the processing technology of the polymers from which they are made, but they are not designed to carry loads. Changing the material to a metal or fiber composite allows these types of joints to be used as replacements for rivets or screws, but there are problems with the closing technique – an increase in closing force due to the large Young’s modulus of these materials relative to polymers without reinforcement. One of the methods to solve this problem may be the use of a thermo-bimetallic effect consisting in heating both or one of the connection parts to the appropriate temperature. This kind of treatment results in deflection of the beam of the clip (Fig. 1), followed by assembly with zero force or less in relation to the case without heating. The paper presents the results of numerical simulations for the connection in which the beam of the clip consisted of two materials: (1) a fiber composite designed to carry loads, (2) thin metal layer tied with the composite and designed to create a thermo-bimetallic effect. In the case of this solution, the main parameter is the difference in coefficients of linear thermal expansion of both materials. The paper presents results for two cases of connection work: closing and opening. The calculations were carried out in the Abaqus/Standard solver using thermal-displacement steps.
Go to article

Abstract

The melt cleaning is an important aspect in the production of high-quality aluminum castings. Specifically inclusions within the melt and an excessively high hydrogen content lead to defects and undesired porosity in the castings. Although it is possible to reduce the amount of hydrogen and oxidic inclusions by purge gas treatment and the use of melting salts, it is impossible to remove oxides (bifilms) created during filling of gating system. Paper deals with the effects of melt quality and the placement of a filter in the filling system on Al-7%Si-Mg alloy mechanical properties. Three different filters were used: (a) rectangular ceramic pressed filter with 3 mm thickness (b) cubical pressed ceramic filter with thickness 10 mm (c) cubical pressed ceramic filter with thickness 22 mm. The results showed that the highest tensile strength values were obtained from the filter with thickness of 22 mm. Numerical simulation analysis of the filling process showed that velocity reduction by filter is the major phenomenon affecting the mechanical properties. Another evaluated aspect during experiments was capability of filters to retain old bifilms. For this purpose multiply remelted alloy was prepared and analyzed. Results showed that filter efficiency increases with decreasing melt quality as a result of possibility to retain “old” bifilms better than small and thin “new” bifilms.
Go to article

Abstract

The impact of small addition of zirconium in hypoeutectic commercial AlSi10MgCu alloys on their mechanical properties (hardness) in as cast and thermally treated conditions was investigated. Small addition of zirconium does not change significantly the as cast and heat-treated microstructure of investigated alloys except to reduce the SDAS and grain size of primary α-aluminium phases. Addition of zirconium up to 0.14 wt. percentage increases the hardness of investigated alloys in as cast conditions. The increase in the hardness of samples after various solid solution times can correlate very well with the formation of small needle like coherent Al3Zr particles.
Go to article

Abstract

The article presents tests results of metalforming of magnesium alloy AZ61. Materials for tests were ingots sized  40×90 mm from magnesium alloy marked with symbol AZ61. Before the shaping process the ingots underwent heat treatment. As a result of conduction of the deformation processes there were rods achieved with diameter of 8 mm. There were axisymmetrical compression tests conducted on the samples taken from rods in temperature range from RT to 350ºC in order to determine the plasticity and formability of the alloy AZ61. Static tensile test was conducted in room temperature (RT), in 300ºC and in 350ºC. With the use of light and electron microscopy techniques the changes which occurred in the microstructure of AZ61alloy in initial condition and after plastic deformation (classic extrusion, KoBo method extrusion) were described. The deformation of alloy AZ61 using the KoBo method contributes to an increase in strength and plastic properties. The effect of superplastic flow was found at a temperature of 350ºC, where a 300% increase in plastic properties – elongation value was obtained. The analysis of the microstructure showed a significant grain size reduction in the microstructure of alloy AZ61 after deformation by the KoBo method and after an axisymmetric compression test, where grains of an average diameter of d = 13 µm were obtained.
Go to article

Abstract

The present article describes selected aspects of investment casting technology for manufacturing of open-cell aluminium. The main focus is, among others, on the precursor thickening. Two groups of total 30 samples were produced, basing on open-cell polyurethane foam used as the precursor. Each of the two sample groups was thickened with a different type of suspension consisting of carbonaceous substances and organic binders. The influence of the coating mixture type was compared, leading to conclusions regarding the desired composition and fluidity of the suspensions. Both sample groups of the obtained open-cell aluminium had stochastic cell distributions, the average pore diameter was 5.2 mm and the PPI index was 8. The apparent densities were respectively: 0.485 g/cm3 and 0.312 g/cm3, which reflected the impact of the precursor coating. Additionally, samples from both groups differed in quality.
Go to article

Abstract

The article presents the results of investigation of ultra-strength nanostructured bainitic steel Fe-0.6%C-1.9%Mn-1.8%Si-1.3%Cr-0.7%Mo (in wt. %) subjected to shear and uniaxial compression under high strain rate loading. Steel of microstructure consisted of carbide-free bainite and carbon enriched retained austenite presents a perfect balance of mechanical properties especially strength to toughness ratio. Two retained austenite morphologies exist which controlled ductility of the steel: film between bainite laths and separated blocks. It is well established that the strain induced transformation of carbon enriched retained austenite to martensite takes place during deformation. Shear localisation has been found to be an important and often dominant deformation and fracture mode in high-strength steels at high strain rate. Deformation tests were carried out using Gleeble simulator and Split Hopkinson Pressure Bar. Shear and compression strength were determined and toughness and crack resistance were assessed. Susceptibility of nanostructured bainitic steel to the formation of adiabatic shear bands (ASBs) and conditions of the bands formation were analysed. The results suggest that the main mechanism of hardening and failure at the dynamic shearing is local retained austenite transformation to high-carbon martensite which preceded ASBs formation. In the area of strain localization retained austenite transformed to fresh martensite and then steel capability to deformation and strengthening decreases.
Go to article

Abstract

The computational intelligence tool has major contribution to analyse the properties of materials without much experimentation. The B4C particles are used to improve the quality of the strength of materials. With respect to the percentage of these particles used in the micro and nano, composites may fix the mechanical properties. The different combinations of input parameters determine the characteristics of raw materials. The load, content of B4C particles with 0%, 2%, 4%, 6%, 8% and 10% will determine the wear behaviour like CoF, wear rate etc. The properties of materials like stress, strain, % of elongation and impact energy are studied. The temperature based CoF and wear rate is analysed. The temperature may vary between 30°C, 100°C and 200°C. In addition, the CoF and wear rate of materials are predicted with respect to load, weight % of B4C and nano hexagonal boron nitride %. The intelligent tools like Neural Networks (BPNN, RBNN, FL and Decision tree) are applied to analyse these characteristics of micro / nano composites with the inclusion of B4C particles and nano hBN % without physically conducting the experiments in the Lab. The material properties will be classified with respect to the range of input parameters using the computational model.
Go to article

Abstract

In this study, we present a new method for obtaining the parameters of the Johnson-Mehl-Avrami-Kolmogorov equation for dynamic recrystallization grain size. The method consists of finite-element analysis and optimization techniques. An optimization tool iteratively minimizes the error between experimental values and corresponding finite-element solutions. Isothermal backward extrusion of the AA6060 aluminum alloy was used to acquire the main parameters of the equation for predicting DRX grain size. We compared grain sizes predicted using optimized and reference parameters with experimental values from the literature and found better agreement when the optimized parameters were applied.
Go to article

Abstract

Al-CuO is a thermite material exhibiting the exothermic reaction only when aluminum melts. For wide spread of its application, the reaction temperature needs to be reduced in addition to the enhancement of total reaction energy. In the present study, a thermite nanocomposite with a large contact area between Al and CuO was fabricated in order to lower the exothermic reaction temperature and to improve the reactivity. A cryomilling process was performed to achieve the nanostructure, and the effect of composition on the microstructure and its reactivity was studied in detail. The microstructure was characterized using SEM and XRD, and the thermal property was analyzed using DSC. The results show that as the molar ratio between Al and CuO varies, the fraction of uniform nanocomposite structure was changed affecting the exothermic reaction characteristics.
Go to article

This page uses 'cookies'. Learn more