Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy publikacji
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 2
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

The study presents the results of research on the development of composite zones in castings based on the intermetallic phase of Ni3Al. Composite zones were obtained by placing packets with substrates for the reaction of titanium carbide in a foundry mould. To provide a variable carbides content in the composite zone, two compositions of the packets were prepared. The first packet contained only substrates for the reaction of TiC synthesis; the second one also contained a filler. The resulting composite zones in castings were examined for the filler effect on changes in the volume fraction, size and morphology of carbides in the zone. In addition, the effect of filler on the mechanical properties of the zone was verified, observing changes of Vickers hardness in this area. It was found that the presence of filler in the composition of the packet for synthesis reduced the content of carbides, as well as their size and morphology. Lower surface content of carbides reduced hardness of the zone, which enabled smooth control of the mechanical properties. At the same time, the use of the selected filler did not disturb the course of the TiC carbide synthesis.
Przejdź do artykułu

Abstrakt

The aim of this paper was to attain defect free, pure copper castings with the highest possible electrical conductivity. In this connection, the effect of magnesium additives on the structure, the degree of undercooling (ΔTα = Tα-Tmin, where Tα – the equilibrium solidification temperature, Tmin – the minimum temperature at the beginning of solidification), electrical conductivity, and the oxygen concentration of pure copper castings have been studied. The two magnesium doses have been investigated; namely 0.1 wt.% and 0.2 wt.%. A thermal analysis was performed (using a type-S thermocouple) to determine the cooling curves. The degree of undercooling and recalescence were determined from the cooling and solidification curves, whereas the macrostructure characteristics were conducted based on a metallographic examination. It has been shown that the reaction of Mg causes solidification to transform from exogenous to endogenous. Finally, the results of electrical conductivity have been shown as well as the oxygen concentration for the used Mg additives.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji