Search results

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Experimental and numerical investigation of thermal flow meter

Abstract

The paper presents analytical and numerical model calculation results of the temperature distribution along the thermal flow meter. Results show a very good conformity between numerical and analytical model. Apart from the calculation results the experimental investigations are presented. The author performed the test where a temperature of duct wall surface was measured. Therelation between mass flow rate in terms of the duct surface temperature difference was developed.
Go to article

Verification of heat flux and temperature calculation on the control rod outer surface

Abstract

The paper presents heat transfer calculation results concerning a control rod of Forsmark Nuclear Power Plant (NPP). The part of the control rod, which is the object of interest, is surrounded by a mixing region of hot and cold flows and, as a consequence, is subjected to thermal fluctuations. The paper describes a numerical test which validates the method based on the solution of the inverse heat conduction problem (IHCP). The comparison of the results achieved by two methods, computational fluid dynamics (CFD) simulations and IHCP, including a description of the IHCP method used in the calculation process, shows a very good agreement between the methods.
Go to article

Modelling of heat and flow phenomena occuring in waterwall tubes of boilers for supercritical steam parameters

Abstract

In this paper a mathematical model enabling the analysis of the heat-flow phenomena occurring in the waterwalls of the combustion chambers of the boilers for supercritical parameters is proposed. It is a one-dimensional model with distributed parameters based on the solution of equations describing the conservation laws of mass, momentum, and energy. The purpose of the numerical calculations is to determine the distributions of the fluid enthalpy and the temperature of the waterwall pipes. This temperature should not exceed the calculation temperature for particular category of steel. The derived differential equations are solved using two methods: with the use of the implicit difference scheme, in which the mesh with regular nodes was applied, and using the Runge-Kutta method. The temperature distribution of the waterwall pipes is determined using the CFD. All thermophysical properties of the fluid and waterwall pipes are computed in real-time. The time-spatial heat transfer coefficient distribution is also computed in the on-line mode. The heat calculations for the combustion chamber are carried out with the use of the zone method, thus the thermal load distribution of the waterwalls is known. The time needed for the computations is of great importance when taking into consideration calculations carried out in the on-line mode. A correctly solved one-dimensional model ensures the appropriately short computational time.
Go to article