Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Queuing regime is one outstanding approach in improving channel aggregation. If well designed and incorporated with carefully selected parameters, it enhances the smooth rollout of fifth/next generation wireless networks. While channel aggregation is the merging of scattered TV white space (spectrum holes) into one usable chunk for secondary users (SU). The queuing regime ensures that these unlicensed users (SUs) traffic/ services are not interrupted permanently (blocked/dropped or forced to terminate) in the event of the licensed users (primary user) arrival. However, SUs are not identical in terms of traffic class and bandwidth consumption hence, they are classified as real time and non-real time SU respectively. Several of these strategies have been studied considering queuing regime with a single feedback queuing discipline. In furtherance to previous proposed work with single feedback queuing regime, this paper proposes, develops and compares channel aggregation policies with two feedback queuing regimes for the different classes of SUs. The investigation aims at identifying the impacts of the twofeedback queuing regime on the performance of the secondary network such that any SU that has not completed its ongoing service are queued in their respective buffers. The performance is evaluated through a simulation framework. The results validate that with a well-designed queuing regime, capacity, access and other indices are improved with significant decrease in blocking and forced termination probabilities respectively.
Go to article

Abstract

This article investigates and evaluates a handover exchange scheme between two secondary users (SUs) moving in different directions across the handover region of neighboring cell in a cognitive radio network. More specifically, this investigation compares the performance of SUs in a cellular cognitive radio network with and without channel exchange scheme. The investigation shows reduced handover failure, blocking, forced and access probabilities respectively, for handover exchange scheme with buffer as compared to exchange scheme without buffer. It also shows transaction within two cognitive nodes within a network region. The system setup is evaluated through system simulation.
Go to article

This page uses 'cookies'. Learn more