Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy publikacji
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 7
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

The embryology of two species, Deschampsia antarctica , a native species, and Poa annua , an alien species in the Antarctic we studied. Flowering buds of plants growing in their natural habitats on King George Island and generative tissues of both plant species grown in a greenhouse were analyzed. Adaptations to autogamy and anemogamy were observed in the flower anatomy of both species. The microsporangia of the evaluated grasses produce a small number of three−celled pollen grains. Numerous pollen grains do not leave the microsporangium and germinate in the thecae. Deschampsia antarctica and P. annua plants harvested in Antarctica developed a particularly small number of microspores in pollen chambers. In D. antarctica , male gametophytes were produced at a faster rate: generative cells in pollen did not become detached from the wall of the pollen grain, they were not embedded in the cytoplasm of vegetative cells, and they divided into two sperm cells situated close to the wall. The monosporous Polygonum type of embryo sac development was observed in the studied species. The egg apparatus had typical polarization, and the filiform apparatus did not develop in synergids. Large antipodals with polyploidal nuclei were formed in the embryo sacs of D. antarctica and P. annua . Poa annua was characterized by numerous antipodal cells which formed antipodal tissue in the chalazal region of the embryo sac. Three distinct antipodals with atypical, lateral position in the vicinity of the egg apparatus were observed in D. antarctica. The diaspores of the investigated grass species were characterized by small size, low weight and species−specific primary and secondary sculpture of the testa and caryopsis coat.
Przejdź do artykułu

Abstrakt

Antarctic pearlwort ( Colobanthus quitensis ) is one of the flowering plant species considered native to maritime Antarctica. Although the species was intensively analyzed towards its morphological, anatomical and physiological adaptation to local environment, its genetic variability is still poorly studied. In the presented study, a recently developed retrotransposon−based DNA marker system (inter Primer Binding Site – iPBS) was applied to assess the genetic diversity and differentiation of C. quitensis populations from King George Island (South Shetland Islands, West Antarctic). A total of 143 scoreable bands were detected using 7 iPBS primers among 122 plant specimens representing 8 populations. 55 (38.5%) bands were found polymorphic, with an average of 14.3% polymorphic fragments per primer. Nine of all observed fragments were represented as a private bands deployed unevenly among populations. Low genetic diversity (on average H e = 0.040 and I = 0.061) and moderate population differentiation (F ST = 0.164) characterize the analyzed material. Clustering based on PCoA revealed, that the populations located on the edges of the study area diverge from the central populations. The pattern of population differentiation corresponds well with their geographic location and the characteristics of the sampling sites. Due to the character of iPBS markers, the observed genetic variability of populations may be explained by the genome rearrangements caused by mobilization of mobile genetic elements in the response to various stress factors. Additionally, this study demonstrates the usefulness of iPBS markers for genetic diversity studies in wild species.
Przejdź do artykułu

Abstrakt

This study investigated leaf mesophyll cells of Caryophyllaceae plants growing in polar regions – Cerastium alpinum and Silene involucrata from the Hornsund region of Spitsbergen island (Svalbard Archipelago, Arctic), and Colobanthus quitensis from the Admiralty Bay region on King George Island (South Shetland Islands, West Antarctic). Ultra− structural changes were analyzed in mesophyll protoplasts of plants growing in natural Arctic and Antarctic habitats and plants grown in a greenhouse, including plants exposed to short−term cold stress under se mi−controlled conditions. Cell organelles of plants growing in natural polar habitats and greenhouse−grown plants were characterized by significant morphological plasticity. Chloroplasts of plants studied in this work formed variously shaped protrusions and invaginations that visibly increased the contact area between adjacent cell compartments and reduced the distance between organelles. S. involucrata plants grown under greenhouse conditions, tested by us in this wor k, were characterized by highly dynamic cell nuclei with single or multiple invaginations of the nuclear membrane and the presence of channels and cisternae filled with cytoplasm and organelles. Crystalline inclusion proteins were observed in the cell nuclei of C. quitensis between nuclear membranes and in the direct proximity of heterochromatin. Our study revealed significant conformational dynamics of organelles, manifested by variations in the optical density of matrices, membranes and envelopes, in particular in C. quitensis , which could suggest that the analyzed Caryophyllaceae taxa are well adapted to severe climate and changing conditions in polar regions.
Przejdź do artykułu

Abstrakt

Our macroscopic observations and microscopic studies conducted by means of a light microscope (LM) and transmission electron microscope (TEM) concerning the reproduction biology of Colobanthus quitensis (Caryophyllaceae) growing in natural conditions in the Antarctic and in a greenhouse in Olsztyn (northern Poland) showed that this plant develops two types of bisexual flowers: opening, chasmogamous flowers and closed, cleistogamous ones. Cleistogamy was caused by a low temperature, high air humidity and strong wind. A small number of microspores differentiated in the microsporangia of C. quitensis , which is typical of cleistogamous species. Microsporocytes, and later micro − spores, formed very thick callose walls. More than twenty spheroidal, polypantoporate pollen grains differentiated in the microsporangium. They germinated on the surface of receptive cells on the dry stigma of the gynoecium or inside the microsporangium. A monosporic embryo sac of the Polygonum type differentiated in the crassinucellar ovule. During this differentiation the nucellus tissue formed and stored reserve materials. In the development of generative cells, a male germ unit (MGU) with differentiated sperm cells was observed. The smaller cell contained mainly mitochondria, and the bigger one plastids. In the process of fertilization in C. quitensis only one nucleus of the sperm cell, without cytoplasm fragments, entered the egg cell, and the proembryo developed according to the Caryophyllad type. Almost all C. quitensis ovules developed and formed perispermic seeds with a completely differentiated embryo both under natural conditions in the Antarctic and in a greenhouse in Olsztyn.
Przejdź do artykułu

Abstrakt

Plants adapt to extremely low temperatures in polar regions by maximizing their photosynthetic efficiency and accumulating cryoprotective and osmoprotective compounds. Flowering plants of the family Poaceae growing in the Arctic and in the Antarctic were investigated. Their responses to cold stress were analyzed under laboratory conditions. Samples were collected after 24 h and 48 h of cold treatment. Quantitative and qualitative changes of sugars are found among different species, but they can differ within a genus of the family Poaceae. The values of the investigated parameters in Poa annua differed considerably depending to the biogeographic origin of plants. At the beginning of the experiment, Antarctic plants were acclimatized in greenhouse characterized by significantly higher content of sugars, including storage reserves, sucrose and starch, but lower total protein content. After 24 h of exposure to cold stress, much smaller changes in the examined parameters were noted in Antarctic plants than in locally grown specimens. Total sugar content and sucrose, starch and glucose levels were nearly constant in P. annua, but they varied significantly. Those changes are responsible for the high adaptability of P. annua to survive and develop in highly unsupportive environments and colonize new regions.
Przejdź do artykułu

Abstrakt

The development of megasporocytes and the functional megaspore formation in Deschampsia antarctica were analyzed with the use of microscopic methods. A single archesporial cell was formed directly under the epidermis in the micropylar region of the ovule without producing a parietal cell. In successive stages of development, the meiocyte was transformed into a megaspore tetrad after meiosis. Most megaspores were arranged in a linear fashion, but some tetrads were T-shaped. Only one of the 60 analyzed ovules contained a cell in the direct proximity of the megasporocyte, which could be an aposporous initial. Most of the evaluated D. antarctica ovules featured monosporic embryo sacs of the Polygonum type. Approximately 30% of ovules contained numerous megaspores that were enlarged. The megaspores were located at chalazal and micropylar poles, and some ovules featured two megaspores - terminal and medial - in the chalazal region, or even three megaspores at the chalazal pole. In those cases, the micropylar megaspore was significantly smaller than the remaining megaspores, and it did not have the characteristic features of functional megaspores. Meiocytes and megaspores of D. antarctica contained polysaccharides that were detectable by PAS-reaction and aniline blue staining. Starch granules and cell walls of megasporocytes, megaspores and nucellar cells were PAS-positive. Fluorescent callose deposits were identified in the micropylar end of the megasporocytes. During meiosis and after its completion, thick callose deposits were also visible in the periclinal walls and in a small amount in the anticlinal walls of megaspores forming linear and T-shaped tetrads. Callose deposits fluorescence was not observed in the walls of the nucellar cells.
Przejdź do artykułu

Abstrakt

The embryology of three polar flowering plants of the family Caryophyllaceae was studied using the methods and techniques of the light, normal and fluorescence microscopes, and the electron microscopes, scanning and transmission. The analyzed species were Colobanthus quitensis of West Antarctic (King George Island, South Shetlands Islands) as well as Cerastium alpinum and Silene involucrata of the Arctic (Spitsbergen, Svalbard). In all evaluated species, flowering responses were adapted to the short Arctic and Australian summer, and adaptations to autogamy and anemogamy were also observed. The microsporangia of the analyzed plants produced small numbers of microspore mother cells that were differentiated into a dozen or dozens of trinucleate pollen grains. The majority of mature pollen grains remained inside microsporangia and germinated in the thecae. The monosporous Polygonum type (the most common type in angiosperms) of embryo sac development was observed in the studied species. The egg apparatus had an egg cell and two synergids with typical polarization. A well-developed filiform apparatus was differentiated in the micropylar end of the synergids. In mature diaspores of the analyzed plants of the family Caryophyllaceae, a large and peripherally located embryo was, in most part, adjacent to perisperm cells filled with reserve substances, whereas the radicle was surrounded by micropylar endosperm composed of a single layer of cells with thick, intensely stained cytoplasm, organelles and reserve substances. The testae of the analyzed plants were characterized by species-specific primary and secondary sculpture, and they contained large amounts of osmophilic material with varied density. Seeds of C. quitensis, C. alpinum and S. involucrata are very small, light and compact shaped.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji