Search results

Filters

  • Journals
  • Date

Search results

Number of results: 8
items per page: 25 50 75
Sort by:

Abstract

The results presented here are twofold. First, a heuristic algorithm is proposed which, through removing some unnecessary arcs from a digraph, tends to reduce it into an adjoint and thus simplifies the search for a Hamiltonian cycle. Second, a heuristic algorithm for DNA sequence assembly is proposed, which uses a graph model of the problem instance, and incorporates two independent procedures of reducing the set of arcs - one of them being the former algorithm. Finally, results of tests of the assembly algorithm on parts of chromosome arm 2R of Drosophila melanogaster are presented.
Go to article

Abstract

Resonance assignment remains one of the hardest stages in RNA tertiary structure determination with the use of Nuclear Magnetic Resonance spectroscopy. We propose an evolutionary algorithm being a tool for an automatization of the procedure. NOE pathway, which determines the assignments, is constructed during an analysis of possible connections between resonances within aromatic and anomeric region of 2D-NOESY spectra resulting from appropriate NMR experiments. Computational tests demonstrate the performance of the evolutionary algorithm as compared with the exact branch-and-cut procedure applied for the experimental and simulated spectral data for RNA molecules.
Go to article

Abstract

Despite the considerable progress that has recently been made in medicine, the treatment of viral infections is still a problem remaining to be solved. This especially concerns infections caused by newly emerging patogenes such as: human immunodeficiency virus, hepatitis C virus or SARS-coronavirus. There are several lines of evidence that the unusual genetic polymorphism of these viruses is responsible for the observed therapeutic difficulties. In order to determine whether some parameters describing a very complex and variable viral population can be used as prognostic factors during antiviral treatment computational methods were applied. To this end, the structure of the viral population and virus evolution in the organisms of two patients suffering from chronic hepatitis C were analyzed. Here we demonstrated that phylogenetic trees and Hamming distances best reflect the differences between virus populations present in the organisms of patients who responded positively and negatively to the applied therapy. Interestingly, the obtained results suggest that based on the elaborated method of virus population analysis one can predict the final outcome of the treatment even before it has started.
Go to article

This page uses 'cookies'. Learn more