Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 18
items per page: 25 50 75
Sort by:

Abstract

The Corded Ware culture societies inhabiting the Carpathian zone used various outcrops of flints to processing axes: Volhynian, Turonian (the Świeciechów and the Gościeradów types), Jurassic A and G-type, cretaceous K-type as well as siliceous marl and radiolarite. From the analysed area 81 axes associated with the Corded Ware culture are known. Most of them come from funeral sites — from grave pits or burial mounds. The predominance of the Volhynian flint is observable in the whole area to the east of Wisłok River, basins of the San River, and in the upper basins of the Tisza and Dniester Rivers. Axes from niche graves on the Rzeszów Foothills, where the Świeciechów flint prevails, are specific in this scope or raw materials distribution. Dispersion of flints can be used indirectly as basis for reconstructing movements of human groups using these raw materials, as well as determining directions of their interactions. It can be noticed that communities of the Corded Ware culture from the Dniester Basin resembled in this respect their counterparts from the Roztocze and the Sokal Ridge, while those from the Rzeszów Foothills shows connections both with the“Volhynian zone” and the Lesser Polish Małopolska Upland.
Go to article

Abstract

Magnesium alloys due to their low density and high strength-to-weight ratio are promising material for the automotive and aerospace industries. Many elements made from magnesium alloys are produced by means of sand casting. It is essential to investigate impact of the applied mould components on the microstructure and the quality of the castings. For the research, six identical, 100x50x20mm plates has been sand cast from the Elektron 21 magnesium casting alloy. Each casting was fed and cooled in a different way: one, surrounded by mould sand, two with cast iron chills 20mm and 40mm thick applied, another two with the same chills as well as feeders applied and one with only the feeder applied. Solid solution grain size and eutectics volume fraction were evaluated quantitatively in Met-Ilo program, casting defects were observed on the scanning electron microscope Hitachi S3400N. The finest solid solution grain was observed in the castings with only the chills applied. Non metallic inclusions were observed in each plate. The smallest shrinkage porosity was observed in the castings with the feeders applied.
Go to article

Abstract

European beaver (Castor fiber), the largest rodent species inhabiting a wide area of Eurasia, feeds mainly on dry parts of plants, bark or wood. Such kind of nourishment needs to be properly digested in each part of the gastrointestinal tract. The time of stomach digestion, which directly influences all the following steps of the digestion process, is precisely controlled by the pylorus and its innervation. However, virtually no data is available on the organization of the enteric nervous system in most of the wild animal species, including beavers. On the other hand, a pecu- liar diet consumed by beavers, suggests that the arrangement of their stomach intramural nerve elements can be atypical. Therefore, the present study investigated the distribution and chemical coding of neurons and nerve fibers in the pylorus of the European beaver. The experiment was performed on stomachs obtained from a group of 6 beavers caught in Northeastern region of Poland (due to beaver overpopulation). Pyloric wall tissue cryosections were double immunostained with a mixture of antibodies against pan-neuronal marker PGP 9.5 (to visualize enteric neurons) and ChAT (cholinergic marker), nNOS (nitrergic marker), SP, CGRP, Gal (peptidergic markers). Confocal microscopy analysis revealed that the majority of enteric nerve cells were clustered forming submucosal and myenteric ganglia and all the studied substances were expressed (in various amounts) in these neurons. We conclude, that the anatomical arrangement and chemical coding of intramural nerve elements in the beaver pylorus resemble those found in other mammalian species.
Go to article

Abstract

The present study investigated the expression of androgen receptor (AR) in neurons of the anterior pelvic ganglion (APG) and celiac-superior mesenteric ganglion (CSMG; ganglion not involved in the innervation of reproductive organs) in the male pig with quantitative real-time PCR (qPCR) and immunohistochemistry. qPCR investigations revealed that the level of AR gene expression in the APG tissue was approximately 2.5 times higher in the adult (180-day-old) than in the juvenile (7-day-old) boars. Furthermore, in both the adult and juvenile animals it was sig- nificantly higher in the APG than in CSMG tissue (42 and 85 times higher, respectively). Immu- nofluorescence results fully confirmed those obtained with qPCR. In the adult boars, nearly all adrenergic (DβH-positive) and the majority of non-adrenergic neurons in APG stained for AR. In the juvenile animals, about half of the adrenergic and non-adrenergic neurons were AR-posi- tive. In both the adult and juvenile animals, only solitary CSMG neurons stained for AR. The present results suggest that in the male pig, pelvic neurons should be considered as an element of highly testosterone-dependent autonomic circuits involved in the regulation of urogenital func- tion, and that their sensitization to androgens is a dynamic process, increasing during the prepu- bertal period.
Go to article

This page uses 'cookies'. Learn more