Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 37
items per page: 25 50 75
Sort by:

Abstract

The positivity and absolute stability of a class of nonlinear continuous-time and discretetime systems are addressed. Necessary and sufficient conditions for the positivity of this class of nonlinear systems are established. Sufficient conditions for the absolute stability of this class of nonlinear systems are also given.
Go to article

Abstract

A new method for computation of positive realizations of given transfer matrices of fractional linear continuous-time linear systems is proposed. Necessary and sufficient conditions for the existence of positive realizations of transfer matrices are given. A procedure for computation of the positive realizations is proposed and illustrated by examples.
Go to article

Abstract

Abstract The conditions for positivity and stability of a class of fractional nonlinear continuous-time systems are established. It is assumed that the nonlinear vector function is continuous, satisfies the Lipschitz condition and the linear part is described by a Metzler matrix. The stability conditions are established by the use of an extension of the Lyapunov method to fractional positive nonlinear systems.
Go to article

Abstract

Abstract A new formulation of the minimum energy control problem for the positive 2D continuous-discrete linear systems with bounded inputs is proposed. Necessary and sufficient conditions for the reachability of the systems are established. Conditions for the existence of the solution to the minimum energy control problem and a procedure for computation of an input minimizing the given performance index are given. Effectiveness of the procedure is demonstrated on numerical example.
Go to article

Abstract

Abstract The asymptotic stability of discrete-time and continuous-time linear systems described by the equations xi+1 = Ākxi and x(t) = Akx(t) for k being integers and rational numbers is addressed. Necessary and sufficient conditions for the asymptotic stability of the systems are established. It is shown that: 1) the asymptotic stability of discrete-time systems depends only on the modules of the eigenvalues of matrix Āk and of the continuous-time systems depends only on phases of the eigenvalues of the matrix Ak, 2) the discrete-time systems are asymptotically stable for all admissible values of the discretization step if and only if the continuous-time systems are asymptotically stable, 3) the upper bound of the discretization step depends on the eigenvalues of the matrix A.
Go to article

Abstract

Abstract The relationship between the observability of standard and fractional discrete-time and continuous-time linear systems are addressed. It is shown that the fractional discrete-time and continuous-time linear systems are observable if and only if the standard discrete-time and continuous-time linear systems are observable.
Go to article

Abstract

Abstract A method of analysis of descriptor nonlinear discrete-time systems with regular pencils of linear part is proposed. The method is based on the Weierstrass-Kronecker decomposition of the pencils. Necessary and sufficient conditions for the positivity of the nonlinear systems are established. A procedure for computing the solution to the equations describing the nonlinear systems are proposed and demonstrated on numerical examples.
Go to article

Abstract

The minimum energy control problem for the positive descriptor discrete-time linear systems with bounded inputs by the use of Weierstrass-Kronecker decomposition is formulated and solved. Necessary and sufficient conditions for the positivity and reachability of descriptor discrete-time linear systems are given. Conditions for the existence of solution and procedure for computation of optimal input and the minimal value of the performance index is proposed and illustrated by a numerical example.
Go to article

This page uses 'cookies'. Learn more