Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Using methods of physical material studies (scanning electron microscopy and micro X-ray spectral analysis), a study was carried out with focus on alteration of structure and phase composition in surface layers of Al-Si alloy (silumin АК10М2N) treated in electroexplosive alloying with a multiphase plasma jet formed in the process of aluminum foil explosion and carrying particles of Y2O3 weighted powder portion. It was revealed that a porous surface layer with non-homogeneously distributed alloying elements (silicon, yttrium) in it is formed in any conditions of electroexplosive alloying of silumin. Thickness of the modified layer is different, varying 50 to 160 µm, depending on the zone to be examined. The modified surface consists basically of Al, Si and Y. Yttrium in the modified layer is thought to be an indirect evidence of better physical and mechanical properties of the surface layer in comparison with the base material.
Go to article

Abstract

By the method of modern physical material science (optic microscopy scanning and transmission electron microscopy) the analysis of structural phase states, the morphology of the second phase inclusions and defect substructure of Al-Si alloy (silumin) of hypoeutectic composition, subjected to electron beam processing was done with the following parameters: energy density 25-35 J/cm2, beam length 150 μs, pulse number – 3, pulse repetition rate – 0.3 Hz, pressure of residual gas (argon) 0.02 Pa. The surface irradiation results in the melting of the surface layer, the dissolution of boundary inclusions, the stricture formation of high speed cellular crystallization of submicron sizes, the repeated precipitation of the second phase nanodimentional particles. With the increased distance from the irradiation surface the layer containing the second phase inclusions of quasi-equilibrium shape along with the crystallization cells was revealed. It is indicative of the processes of Al-Si alloy structure globalization on electron beam processing.
Go to article

This page uses 'cookies'. Learn more