Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The problem presented in this paper refers to the concepts applied to the design of supercritical steam turbines. The issue under the investigation is the presence of a cooling system. Cooling systems aim to protect the main components of the turbines against overheating. However the cooling flows mix with the main flow and modify the expansion line in the steam path. This affects the expansion process in the turbine and changes the performance when compared to the uncooled turbine. The analysis described here investigates the range of the influence of the cooling system on the turbine cycle. This influence is measured mainly through the change of the power generation efficiency. The paper explains the approach towards the assessment of the cooling effects and presents results of the modeling for three supercritical steam cycles.
Go to article

Abstract

Temperature related decrease of steam turbine components is one of the main transient processes that occur during a typical long-term operation. With a natural cooling (no user interference) it takes more than 14 days before the temperature of components reaches the level that allows to open and repair a turbine. It is then reasonable to apply a forced cooling in order to decrease the time between a shut-down of a power generating unit and a beginning of a repair. This paper presents the analysis of application of a forced cooling process to supercritical steam turbines. The main problems under the investigation are the safety issues of the process and the optimization of cooling conditions. The paper describes the safety restrictions and the optimization criteria. The process is analyzed in numerical simulations conducted for various cooling conditions.
Go to article

This page uses 'cookies'. Learn more