Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The paper presents the method of probabilistic optimisation of load bearing capacity and reliability of statically indeterminate bar structures, and of coupling of members in kinematically admissible failure mechanisms (KAFM), which contain minimal critical sets of elements (MCSE). The latter are characterised by the fact that if only a single element is operational, the whole set is operational too. A method of increasing load bearing capacity and reliability of KAFM built from bars dimensioned in accordance with the code is presented. The paper also shows estimation of load bearing capacity and reliability of KAFM of the optimised structures containing elastic-plastic bars with quasi-brittle connections with nodes. The necessity of increasing connection of load bearing capacity and reliability in relation to bar reliability in order to prevent bars from being excluded from MCSE due to connection fracture is estimated.
Go to article

Abstract

The paper provides a solution to the problem of dimensioning decisive bars on the basis of the conditions of meeting the recommended reliability classes [9] of statically determinate structures composed of n members. A theorem was formulated:if a statically determinate structure composed of n decisive members is to attain the reliability greater than, or equal to, the recommended relia-bility p = 1 – q, it is necessary and suffi cient that the damage frequency sum qᵢ of decisive members is smaller than the admissible damage frequency q of thestructure: ∑qᵢ < q. On the basis of this theorem, s coeffi cients that recommend increase of the load bearing capacity of the decisive bars in a statically determinate structure constructed in order to meet the recommended class [9] of the structure reliability, are estimated and presented in a tabular form.
Go to article

Abstract

The study presents the summary of the knowledge of energy-active segments of steel buildings adapted to obtain electrical energy (EE) and thermal energy (TE) from solar radiation, and to transport and store TE. The study shows a general concept of the design of energy-active segments, which are separated from conventional segments in the way that allows the equipment installation and replacement. Exemplary solutions for the design of energy-active segments, optimised with respect to the principle of minimum thermal strain and maximum structural capacity and reliability were given [34]. The following options of the building covers were considered: 1) regular structure, 2) reduced structure, 3) basket structure, 4) structure with a tie, high-pitched to allow snow sliding down the roof to enhance TE and EE obtainment. The essential task described in the study is the optimal adaptation of energy-active segments in large-volume buildings for extraction, transportation and storage of energy from solar radiation.
Go to article

This page uses 'cookies'. Learn more