Search results

Filters

  • Journals
  • Authors
  • Contributor
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

We talk to Dr. Bogdan Jaroszewicz, head of the Białowieża Geobotanical Station of the University of Warsaw, about how planned logging in the Białowieża Forest will damage not only the forest itself but also Poland’s image around the globe.
Go to article

Abstract

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics. Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points. Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.
Go to article

Abstract

Autocorrelation of signals and measurement data makes it difficult to estimate their statistical characteristics. However, the scope of usefulness of autocorrelation functions for statistical description of signal relation is narrowed down to linear processing models. The use of the conditional expected value opens new possibilities in the description of interdependence of stochastic signals for linear and non-linear models. It is described with relatively simple mathematical models with corresponding simple algorithms of their practical implementation. The paper presents a practical model of exponential autocorrelation of measurement data and a theoretical analysis of its impact on the process of conditional averaging of data. Optimization conditions of the process were determined to decrease the variance of a characteristic of the conditional expected value. The obtained theoretical relations were compared with some examples of the experimental results.
Go to article

This page uses 'cookies'. Learn more