Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:

Abstract

Sperm-mediated gene transfer (SMGT) is based on the ability of spermatozoa to bind exoge- nous DNA and transfer it into oocytes by fertilization. However, SMGT is still undergoing opti- mization to improve its efficiency to produce transgenic animals. The acrosome reaction is neces- sary for spermatozoa to carry the exogenous DNA into oocytes. In this study, the effect of the acrosome reaction on the efficiency of spermatozoa carrying exogenous DNA was evalua- ted. The results showed that the efficiency of the acrosome reaction was significantly higher (p<0.05) after incubation with 50 μmol/L progesterone compared to incubation without proges- terone. It was significantly higher (p<0.05) in the 20, 40, and 60 min of progesterone treatment groups than in the 0 min treatment group. The spermatozoa were further incubated with cyanine dye Cy5 labeled DNA (Cy5-DNA) for 30 min at 37°C, and positive fluorescence signals were detected after the acrosome reaction was induced by progesterone at concentrations of 0 and 50 μmol/L for 40 min. The percentage of positive Cy5-DNA signals in spermatozoa was 96.61±2.06% and 97.51±2.03% following exposure to 0 and 50 μmol/L progesterone, respective- ly. The percentage of partial spermatozoa heads observed following combination with Cy5-DNA was 39.73±3.03% and 56.88±3.12% following exposure to 0 and 50 μmol/L progesterone, respec- tively. The ratio of positively stained spermatozoa combined with exogenous DNA showed no reduction after the acrosome reaction. These results suggest that the acrosome reaction might not be the key factor affecting the efficiency of SMGT.
Go to article

Abstract

Self-biting disease occurs in most farmed fur animals in the world. The mechanism and rapid detection method of this disease has not been reported. We applied bulked sergeant analysis (BSA) in combination with RAPD method to analyze a molecular genetic marker linked with self-biting trait in mink group. The molecular marker was converted into SCAR and loop-mediated isothermal amplification (LAMP) marker for rapid detection of this disease. A single RAPD marker A10 amplified a specific band of 1000bp in self-biting minks. The sequences of the bands exhibited 73% similarity to the Canis Brucella. SCAR and LAMP marker were designed for the specific fragment of RAPD marker A10 and validated in 30 self-biting minks and 30 healthy minks. c2 test showed difference (p<0.05) with SCAR and significant difference (p<0.01) with LAMP in the detection rate between the two groups, but LAMP method was more accurate than SCAR method. This indicated that LAMP can be used as a positive marker to detect self-biting disease in minks.
Go to article

This page uses 'cookies'. Learn more