Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Short state-of-the-art on the enhancement of condensation heat transfer techniques by means of condensate drainage is presented in this paper. The electrohydrodynamic (EHD) technique is suitable for dielectric media used in refrigeration, organic Rankine cycles and heat pump devices. The electric field is commonly generated in the case of horizontal tubes by means of a rod-type electrode or mesh electrodes. Authors proposed two geometries in the presented own experimental investigations. The first one was an electrode placed just beneath the tube bottom and the second one consisted of a horizontal finned tube with a double electrode placed beneath the tube. The experimental investigations of these two configurations for condensation of refrigerant R-123 have been accomplished. The obtained results confirmed that the application of the EHD technique for the investigated tube and electrode arrangement caused significant increase in heat transfer coefficient. The condensation enhancement depends both on the geometry of the electrode system and on the applied voltage.
Go to article

Abstract

The paper presents an efficiency analysis of two transcritical CO2 power cycles with regenerative heaters. For the proposed cycles, calculations of thermal efficiency are given for selected values of operating parameters. It was assumed that the highest working temperature and pressure are in the range from 600 to 700 °C and 40 to 50 MPa, respectively. The purpose of the calculations was optimization of the pressure and mass flows in the regenerative heaters to achieve maximum cycle efficiency. It follows that for the assumed upper CO2 parameters, efficiency of 51-54% can be reached, which is comparable to the efficiency of a supercritical advanced power cycle considered by Dostal.
Go to article

Abstract

In the paper, a method for determination of the near-critical region boundary is proposed. The boundary is evaluated with respect to variations of specific heat capacity along isobars. It is assumed that the value of specific heat capacity inside the near-critical region exceeds by more than 50% the practically constant value typical for fluids under normal conditions. It appears that large variations of heat capacity are also present for high-pressure subcritical states sufficiently close to the critical point. Therefore, such defined near-critical region is located not only in supercritical fluid domain but also extends into subcritical fluid. As an example, the boundaries of the near-critical region were evaluated for water, carbon dioxide and R143a.
Go to article

This page uses 'cookies'. Learn more