Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The aim of the paper is the residual stress analysis of AlSi10Mg material fabricated by selective laser melting (SLM). The SLM technique allows to product of complex geometries based on three-dimensional model, in which stiffness and porosity can be precisely designed for specific uses. As the studied material, there were chosen solid samples built in two different directions: parallel (P-L) and perpendicular (P-R) to the tested surface and cellular lattice built in perpendicular direction, as well. In the paper, for the complex characterization of obtained materials, the phase analysis, residual stress and texture studies were performed. The classical non-destructive sin2ψ method was used to measure the residual stress measurements. The final products, both solid sample and cellular lattice, have a homogeneous phase composition and consist of solid solution Al(Si) (Fm-3m) type, Si (Fd-3m) and Mg2Si (Pnma). The obtained values of the crystallite size are in a range of 1000 Å for Al(Si), 130-180 Å for Si phase. For Mg2Si phase, the crystallite sizes depend on sintering process, they are 800 Å for solid samples and 107 Å for cellular lattice. The residual stress results have the compressive character and they are in a range from –5 to –15 MPa.
Go to article

Abstract

In the present study, a titanium cellular lattice structure with a mathematical designed porosity gradient was successfully fabricated using the selective laser melting method. The samples with smooth gradient transition of porosity of between 60% and 80% were received for different elementary cell geometries. Elementary cells belong to the triply periodic minimal surfaces family (G, D, I2Y, IWP). Each sample was subjected to a comprehensive analysis including: dimensional metrology and assessment of material defects (X-ray micro-tomography), surface morphology tests (scanning electron microscopy) and mechanical properties (universal testing machine). It has been shown that a cellular lattice with high dimensional accuracy (+0.16/–0.08 mm) and full dense struts can be obtained. According to the assumption, the gradient increases the strength of the cellular lattice samples. The highest increase in plateau stress between the samples with and without gradient was found for the I2Y series (about 185%). Furthermore, it was found that the stress-strain response of the samples depends not only on total porosity, but also on the 3D geometry of the cellular lattice. The stress-strain curves for G, IWP and I2Y samples are smooth and exhibit three characteristic regions: linear elasticity, plateau region and densification region. The size of regions depends on the geometric features of the cellular lattice. For series D, in the plateau region, the fluctuations in stress value are clearly visible. The smoothest stress-strain curve can be noted for the G series, which combined with good mechanical properties (the plateau stress and energy absorbed, at respectively 25.5 and 43.2 MPa, and 46.3J and 59.5J for Gyr_80 and Gyr_6080, which corresponds to a strain of almost 65% and 50%) positively affects the applicability of cellular structures with such geometry.
Go to article

This page uses 'cookies'. Learn more