Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy publikacji
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 2
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Fe-Cr-B alloy is a material with precipitation of boride inside Fe matrix, and it features outstanding hardness and wear resistance properties. However, Fe-Cr-B alloy is a difficult material to process, making it difficult to use as a bulk type structure material which requires delicate shapes. This study attempted to manufacture Fe-Cr-B alloy using a 3D printing process, laser metal deposition. This study also investigated the microstructure, hardness and compression properties of the manufactured alloy. Phase analysis results is confirmed that α-Fe phase as matrix and (Cr, Fe)2B phase as reinforcement phase. In the case of (Cr, Fe)2B phase, differences were observed according to the sample location. While long, coarse, unidirectional needle-type boride phases (~11 μm thickness) were observed in the center area of the sample, relatively finer boride phases (~6 μm thickness) in random directions were observed in other areas. At room temperature compression test results confirmed that the sample had a compression strength is approximately 2.1 GPa, proving that the sample is a material with extremely high strength. Observation of the compression fracture surface identified intergranular fractures in areas with needle-type boride, and transgranular fractures in areas with random borides. Based on this results, this study also reviewed the deformation behavior of LMD Fe-Cr-B alloy in relation to its microstructures.
Przejdź do artykułu

Abstrakt

The β-phase Titanium (β-Ti) alloys have been under the spotlight in the recent past for their use as biomedical prosthetic materials owing to their excellent properties such as low elastic modulus, high corrosion resistance and tensile strength. Recently, Niobium (Nb) has gained a lot of attention as a β-phase stabilizing element in Ti alloys to replace Vanadium (V) due to its excellent solubility in Ti, low elastic modulus and biocompatibility. In this work, low cost Ti-20Nb binary alloy has been fabricated via powder metallurgy procedures. The blended powder mixtures of Ti and Nb were sintered at 900°C for 20 mins by the Spark Plasma Sintering (SPS) with an applied uniaxial pressure of 40 MPa. The heating rate was fixed at 50°C/min. The sintered alloy was subject to heat treatments at 1200°C in vacuum condition for various time durations. The characterizations of microstructure obtained during this process were done using FE-SEM, EDS and XRD. By increasing heat treatment time, as understood, the volume of residual Nb particles was decreased resulting in accelerated diffusion of Nb into Ti. Micro hardness of the alloy increased from 340 to 355 HV with the increase in β phase content from 30 to 45%. The resultant alloys had relatively high densities and homogenized microstructures of dispersed lamellar β grains in α matrix.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji