Search results

Filters

  • Journals
  • Date

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

The paper deals with the application of the eXtended Finite Element Method (XFEM) to simulations of discrete macro-cracks in plain concrete specimens under tension, bending and shear. Fundamental relationships and basic discrete constitutive laws were described. The most important aspects of the numerical implementation were discussed. Advantages and disadvantages of the method were outlined.
Go to article

Abstract

A two-scale numerical homogenization approach was used for granular materials. At small-scale level, granular micro-structure was simulated using the discrete element method. At macroscopic level, the finite element method was applied. An up-scaling technique took into account a discrete model at each Gauss integration point of the FEM mesh to derive numerically an overall constitutive response of the material. In this process, a tangent operator was generated with the stress increment corresponding to the given strain increment at the Gauss point. In order to detect a loss of the solution uniqueness, a determinant of the acoustic tensor associated with the tangent operator was calculated. Some elementary geotechnical tests were numerically calculated using a combined DEM-FEM technique.
Go to article

Abstract

This paper presents numerical two-dimensional results for fine-grained concrete under quasi-static three-point bending at meso-scale. Concrete was modelled as a random heterogeneous three-phase material. The simulations for notched concrete beams were carried out with the standard finite element method using an isotropic damage constitutive model enhanced by a characteristic length of micro-structure by means of a non-local theory. The effect of the volume fraction, shape, size, statistical distribution and stiffness of aggregate was analysed. Moreover, the effect of the bond thickness, notch size and characteristic length of micro-structure on the material behaviour was numerically investigated. The FE results were compared with own laboratory test results and other meso-scale calculations for three-phase concrete elements.
Go to article

Abstract

The influence of the CO₂ concentration in a local air zone in naturally ventilated residential houses on the residents’ behaviour was numerically investigated. A numerical two-dimensional CFD model of the indoor zone based on experiments performed by the authors was used. Different resident locations in the fluid domain and different inlet velocities imposed by wind were considered in simulations. The overall thermal comfort and IAQ indices were also calculated. The investigations results show that in contrast to the overall air quality, the local CO₂ was strongly dependent upon the resident location, fresh air inlet velocity and ventilation system type.
Go to article

This page uses 'cookies'. Learn more