Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:

Abstract

Chlorophyll α, phytoplankton, suspensions and zooplankton beneath the fast ice have been studied in Spitsbergen fjords (Hornsund, Bellsund, Sassenfjord, Gronfjord and Kongsfjord) in 1982, 1984/85,1987 and 1988. Observations on ice associated Polar cod and wildlife have been collected simultaneously. There were no typical sympagic communities observed at the West Spitsbergen fast ice. Exception was spring 1982 and 1988 when drifting ice from Barents Sea contributed to the fjords fauna. Fast ice on the investigated fjords was poor in adjacent zooplankton (biomass below 0.06 g/m3). Ice phytoplankton reflects the autumn situation and no specific communities of algae have been found. Chlorophyll α amount and organic sedimentation from ice and from the adjacent water were very similar (0.4 to 1.7 mg/m3 chlorophyll and 8 to 10 g d.w./m2/day sedimenling matter). The diet of Polar cod reflected the food items occurrence, Calanus has been the most common food. N o specific concentration of seabirds have been observed at fjords ice.
Go to article

Abstract

Hornsund and Kongsfjorden are two similar-sized Arctic fjords on the West coast of Spitsbergen. They are influenced by cold coastal Arctic water (Hornsund) and warmer Atlantic water (Kongsfjorden). Environmental conditions affect the timing, quantity, spatial distribution (horizontal and vertical) of spring and summer blooms of protists as well as the taxonomic composition of those assemblages. Here, we compile published data and unpublished own measurement from the past two decades to compare the environmental factors and primary production in two fjord systems. Kongsfjorden is characterized by a deeper euphotic zone, higher biomass and greater proportion of autotrophic species. Hornsund seems to obtain more nutrients due to the extensive seabird colonies and exhibits higher turbidity compared to Kongsfjorden. The annual primary production in the analysed fjords ranges from 48 g C m-2 y-1 in Kongsfjorden to 216 g C m-2 y-1 in Hornsund, with a dominant component of microplankton (90%) followed by macrophytes and microphytobenthos.
Go to article

Abstract

Suspended matter, phytoplankton and light attenuation were investigated in various North East Greenland, Svalbard and Siberian river mouths in 1992-1994. The amount of mineral suspensions well correlated with freshwater discharge in the case of tidal glacier bays, while such correlation in Siberian rivers and pack ice meltwater was not found. Freshwater phytoplankton species were found in Siberian estuaries only and in two other ecosystems marine and ice phytoplankton species prevailed. The light attenuation connected with freshwater discharge seems to be a key factor limiting primary production in coastal Actic waters in the summer. The amount of glacial suspensions well correlated with the salinity drop in the case of Svalbard, while Siberian river estuaries produced very turbid waters with the suspension loads not correlated to freshwater or depth.
Go to article

Abstract

The identification of macroalgal beds is a crucial component for the description of fjord ecosystems. Direct, biological sampling is still the most popular investigation technique but acoustic methods are becoming increasingly recognized as a very efficient tool for the assessment of benthic communities. In 2007 we carried out the first acoustic survey of the littoral areas in Kongsfjorden. A 2.68 km2 area comprised within a 12.40 km2 euphotic zone was mapped along the fjord's coast using single- and multi-beam echosounders. The singlebeam echosounder (SBES) proved to be a very efficient and reliable tool for macroalgae detection in Arctic conditions. The multibeam echosounder (MBES) was very useful in extending the SBES survey range, even though it's ability in discriminating benthic communities was limited. The final result of our investigation is a map of the macroalgae distribution around the fjord, showing 39% macroalgae coverage (1.09 km2) of investigated area between isobaths -0.70 m and -30 m. Zonation analysis showed that most of the studied macroalgae areas occur up to 15 m depth (93%). These results were confirmed by biological sampling and observation in key areas. The potential of acoustic imaging of macrophytes, and a proposed methodology for the processing of acoustic data, are presented in this paper along with preliminary studies on the acoustic reflectivity of macroalgae, also highlighting differences among species. These results can be applied to future monitoring of the evolution of kelp beds in different areas of the Arctic, and in the rest of the world.
Go to article

This page uses 'cookies'. Learn more