Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Microbes living in the polar regions have some common and unique strategies to respond to thermal stress. Nevertheless, the amount of information available, especially at the molecular level is lacking for some organisms such as Antarctic psychrophilic yeast. For instance, it is not known whether molecular chaperones in Antarctic yeasts play similar roles to those from mesophilic yeasts when they are exposed to heat stress. Therefore, this project aimed to determine the gene expression patterns and roles of molecular chaperones in Antarctic psychrophilic Glaciozyma antarctica PI12 that was exposed to heat stress. G. antarctica PI12 was grown at its optimal growth temperature of 12ºC and later exposed to heat stresses at 16ºC and 20ºC for 6 hours. Transcriptomes of those cells were extracted, sequenced and analyzed. Thirty-three molecular chaperone genes demonstrated differential expression of which 23 were up-regulated while 10 were down-regulated. Functions of up-regulated molecular chaperone genes were related to protein binding, response to a stimulus, chaperone binding, cellular response to stress, oxidation, and reduction, ATP binding, DNA-damage response and regulation for cellular protein metabolic process. On the other hand, functions of down-regulated molecular chaperone genes were related to chaperone-mediated protein complex assembly, transcription, cellular macromolecule metabolic process, regulation of cell growth and ribosome biogenesis. The findings provided information on how molecular chaperones work together in a complex network to protect the cells under heat stress. It also highlights the evolutionary conserved protective role of molecular chaperones in psychrophilic yeast, G. antarctica, and mesophilic yeast, Saccharomyces cerevisiae.
Go to article

Abstract

This project aimed to isolate and characterize volcanic soil Actinobacteria from Deception Island, Antarctic. A total of twenty−four Actinobacteria strains were isolated using four different isolation media (Starch casein agar, R2 agar, Actinomycete isolation agar, Streptomyces agar) and characterized basing on 16S rRNA gene sequences. Tests for secondary metabolites were performed using well diffusion method to detect antimicrobial activities against eight different pathogens, namely Staphyloccocus aureus ATCC 33591, Bacillus megaterium , Enterobacter cloacae , Klebsiella oxytoca , S. enterica serotype Enteritidis, S. enterica serotype Paratyphi ATCC 9150, S. enterica serotype Typhimurium ATCC 14028 and Vibrio cholerae . Antimicrobial properties were detected against Salmonella paratyphi A and Salmonella typhimurium at the concentration of 0.3092±0.08 g/ml. The bioactive strains were identified as Gordonia terrae , Leifsonia soli and Terrabacter lapilli. Results from this study showed that the soil of Deception Island is likely a good source of isolation for Actinobacteria. The volcanic soil Actinobacteria are potentially rich source for discovery of antimicrobial compounds.
Go to article

Abstract

This report describes the isolation and characterization of bacterial isolates that produce anti−microbial compounds from one of the South Shetland Islands, King George Is − land, Antarctica. Of a total 2465 bacterial isolates recovered from the soil samples, six (BG5, MTC3, WEK1, WEA1, MA2 and CG21) demonstrated inhibitory effects on the growth of one or more Gram−negative or Gram−positive indicator foodborne pathogens ( i.e. Escherichia coli 0157:H7, Salmonella spp., Klebsiella pneumoniae , Enterobacter cloacae , Vibrio parahaemolyticus and Bacillus cereus ). Upon examination of their 16S rRNA sequences and biochemical profiles, the six Antarctic bacterial isolates were identified as Gram−negative Pedobacter cryoconitis (BG5), Pseudomonas migulae (WEK1), P. corrugata (WEA1) and Pseudomonas spp. (MTC3, MA2, and CG21). While inhibitors produced by strains BG5, MTC3 and CG21 were sensitive to protease treatment, those produced by strains WEK1, WEA1, and MA2 were insensitive to catalase, lipase, a −amylase, and protease enzymes. In addtion, the six Antarctic bacterial isolates appeared to be resistant to multiple antibiotics.
Go to article

This page uses 'cookies'. Learn more