Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

This paper presents the results of measurements of the sound absorption coefficient of auditorium seats carried out in the laboratory using two methods. In the first one, small blocks of seats in various arrangements were studied in a reverberation chamber to determine the absorption coefficient of an auditorium of infinite dimensions. The results were compared to the values of the absorption coefficient measured using the second method, which involved samples enclosed within a frame screening the side surfaces of other auditorium blocks. The results of both methods allowed for the assessment of the sound absorption coefficient of an auditorium of any dimensions while taking into account the sound absorption by the side surfaces. The method developed by the authors will simplify the currently known measurement procedures.
Go to article

Abstract

Fabric covering is often used by designers, as it can easily mask acoustic structures that do not match an interior. However, in the case of sound diffusers based on change in the phase of the reflected wave, the use of fabric covering is not without its effect on acoustics. It reduces the effectiveness of these structures and raises acoustic absorption. In the paper, the authors analyzed the acoustical properties of a selected fabric used to cover sound diffusers. Sound absorption and scattering coefficients for a system composed of sound diffusers and a fabric situated at different distances d were measured. The results were compared to the sound absorption predicted on the basis of Kuttruff’s and Mechel’s theoretical models. Analysis of the results indicates that the fabric has a significant influence on the system’s acoustic parameters. It is also observed, that fabric applied directly on a phase grating diffuser, produces higher absorption than when it is at some distance from it.
Go to article

Abstract

The paper focuses on the problem of test signal selection in determining the sound scattering coefficient in accordance with ISO 17497-1. Research shows that the use of MLS signal is preferred in this procedure. The sine sweep signal, despite its advantages, presents certain limitations if the sample is moving during measurement. An attempt has been made to develop a method that allows for minimization of error, demonstrating the dependence of the obtained values of the sound scattering coefficient on the rotational speed of the turntable and type of test signal. Conditions for the application of the sine sweep signals in continuous and discrete measurements were defined.
Go to article

This page uses 'cookies'. Learn more