Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

The Intrauterine fetal development process is complicated and affected by many regulating factors such as maternal nutritional status, transcription factors and adipokines. Adipokines are kinds of active substances secreted by adipose tissue, including more than 50 kinds of molecules. To explore the correlation between calf birth weights and adipokines including adiponectin, leptin, visfatin, and IGF-1 in cows venous and venous cord blood. Fifty-four healthy multiparous Chinese Holstein cows were used; in which, cows with a calf weight less than 40 kg were included in group A (n=9); those with a calf weight between 40 kg~45 kg were included in group B (n=25) and ≥45 kg were included in group C (n=20), venous blood and cord venous blood was collected. An ELISA kit was used to evaluate the concentration of adiponectin, leptin, visfatin, and IGF-1, correlations between index-index and index-calf birth weight were analysed. In both cows venous and cord venous blood, adiponectin, leptin, visfatin, and IGF-1 levels were significantly correlated with each other (p<0.01), and levels of these adipokines in venous blood were significantly higher than cord venous blood (p<0.01). Adiponectin, leptin, visfatin, and IGF-1 in venous cord blood were positively correlated with calf birth weights, and significantly correlated with calf birth weights respectively (p<0.01). Our study showed that adiponectin, leptin, and IGF-1 were found in venous blood and cord venous blood, and adiponectin, leptin, and IGF-1 in venous and cord venous blood potentially inter-regulated each other; adiponectin, leptin, and IGF-1 in venous blood were not significantly correlated with calf birth weights, while adiponectin, leptin, visfatin, and IGF-1 in venous cord blood were significantly correlated with calf birth weights, respectively.
Go to article

Abstract

Taking bacterial virulence factors as targets is a new therapy for treating host bacterial infection. The aim of this study was to investigate the effect of matrine on α-hemolysin production of Staphylococcus aureus (S. aureus) and reducing the damage to bovine mammary epithelial cells (BMECs) induced by S. aureus α-hemolysin. Subinhibitory concentrations of matrine decreased the production of α-hemolysin in none dose-dependent manner and matrine exhibited a protective effect on S. aureus-induced BMECs injury. The results indicated that the structure of matrine may potentially be used as a basic structure for development of drugs aimed at curing and preventing dairy bovine mastitis.
Go to article

Abstract

The combined effect of sulfur (S) and acid soluble aluminum (Als) content on precipitates and microstructures in grainoriented silicon steel were investigated. The results show that there are dominant AlN and a little amount of MnS-AlN composite in annealed hot-rolled band, and the amount of precipitates increases distinctly with increasing Als content, while S content plays a negligible role. The inhibitors that precipitate during hot band annealing can restrain the grain growth during hot band annealing and primary annealing, and the smaller grains of annealed hot-rolled band can contribute to the formation of {111} <112> texture during primary annealing. Lower S content is conducive to the formation of {111} <112> texture during primary annealing by promoting the formation of Goss texture during hot rolling.
Go to article

Abstract

The full-length cDNA of LeTIR1 gene was isolated from tomato with EST-based in silico cloning followed by RACE amplification. LeTIR1 contained an open reading frame (ORF) 1872 bp long, encoding 624 amino acid residues. The predicted protein LeTIR1 had one F-box motif and eleven leucine-rich repeats (LRRs), all of which are highly conserved in TIR1 proteins of other plant species. Phylogenetic analysis showed that the LeTIR1 protein shared high similarity with other known TIR1 proteins. Both sequence and phylogenetic analysis suggested that LeTIR1 is a TIR1 homologue and encodes an F-box protein in tomato. Semi-quantitative RT-PCR indicated that LeTIR1 was expressed constitutively in all organs tested, with higher expression in stem than root, leaf, flower and fruit. Its expression level was positively correlated with the auxin distribution in stem or axillary shoot, and was induced by spraying exogenous IAA.
Go to article

This page uses 'cookies'. Learn more