Search results

Filters

  • Journals
  • Date

Search results

Number of results: 12
items per page: 25 50 75
Sort by:

Abstract

The scope of this work focuses on the aspects of quality and safety assurance of the iron cast manufacturing processes. Special attention was given to the processes of quality control and after-machining of iron casts manufactured on automatic foundry lines. Due to low level of automation and huge work intensity at this stage of the process, a model area was established which underwent reorganization in accordance with the assumptions of the World Class Manufacturing (WCM). An analysis of work intensity was carried out and the costs were divided in order to identify operations with no value added, particularly at individual manufacturing departments. Also an analysis of ergonomics at work stations was carried out to eliminate activities that are uncomfortable and dangerous to the workers' health. Several solutions were proposed in terms of rationalization of work organization at iron cast after-machining work stations. The proposed solutions were assessed with the use of multi-criteria assessment tools and then the best variant was selected based on the assumed optimization criteria. The summary of the obtained results reflects benefits from implementation of the proposed solutions.
Go to article

Abstract

The work presents the results of examinations concerning the influence of various amounts of home scrap additions on the properties of castings made of MgAl9Zn1 alloy. The fraction of home scrap in the metal charge ranged from 0 to 100%. Castings were pressure cast by means of the hot-chamber pressure die casting machine under the industrial conditions in one of the domestic foundries. The examinations consisted in the determination of the following properties: tensile strength Rm, yield strength Rp0.2, and the unit elongation A5, all being measured during the static tensile test. Also, the hardness measurements were taken by the Brinell method. It was found that the mechanical properties (mainly the strength properties) are being improved up to the home scrap fraction of 50%. Their values were increased by about 30% over this range. Further rise in the home scrap content, however, brought a definite decrease in these properties. The unit elongation A5 exhibited continual decrease with an increase in the home scrap fraction in the metal charge. A large growth of hardness was noticed for the home scrap fraction increasing up to the value of 50%. Further increasing the home scrap percentage, however, did not result in a significant rise of the hardness value any more.
Go to article

Abstract

The work presents the results of examinations concerning the influence of various amounts of home scrap additions on the porosity of castings made of MgAl9Zn1 alloy. The fraction of home scrap in the metal charge ranged from 0 to 100%. Castings were pressure cast by means of the hot-chamber pressure die casting machine under the industrial conditions in one of the domestic foundries. Additionally, for the purpose of comparison, the porosity of specimens cut out directly of the MgAl9Zn1 ingot alloy was also determined. The examinations consisted in the qualitative assessment of porosity by means of the optical microscopy and its quantitative determination by the method of weighting specimens in air and in water. It was found during the examination that the porosity of castings decreases with an increase in the home scrap fraction in the metal charge. The qualitative examinations confirmed the beneficial influence of the increased home scrap fraction on the porosity of castings. It was concluded that the reusing of home scrap in a foundry can be a good way of reduction of costs related to the production of pressure castings.
Go to article

Abstract

The work deals with technology Patternless process that combines 3 manufacturing process mold by using rapid prototyping technology, conventional sand formation and 3D milling. It's unconventional technology that has been developed to produce large-sized and heavyduty castings weighing up to several tons. It is used mainly in prototype and small batch production, because eliminating production of models. The work deals with the production of blocks for making molds of gypsum and gypsum drying process technology Thermomold. Into blocks, where were made cavities by milling were casted test castings from AlSi10MgMn alloy by gravity casting. At machining of the mold cavity was varied feed rate of tool of cemented carbide. Evaluated was the surface roughness of test castings, that was to 5 micrometers with feed from 900 to 1300 mm/min. The dimensional accuracy of castings was high at feed rate of 1000 and 1500 mm/min did not exceed 0.025 mm.
Go to article

Abstract

The problem of materials selection in terms of their mechanical properties during the design of new products is a key issue of design. The complexity of this process is mainly due to a multitude of variants in the previously produced materials and the possibility of their further processing improving the properties. In everyday practice, the problem is solved basing on expert or designer knowledge. The paper is the proposition of a solution using computer-aided analysis of material experimental data, which may be acquired from external data sources. In both cases, taking into account the rapid growth of data, additional tools become increasingly important, mainly those which offer support for adding, viewing, and simple comparison of different experiments. In this paper, the use of formal knowledge representation in the form of an ontology is proposed as a bridge between physical repositories of data in the form of files and user queries, which are usually formulated in natural language. The number and the sophisticated internal structure of attributes or parameters that could be the criteria of the search for the user are an important issue in the traditional data search tools. Ontology, as a formal representation of knowledge, enables taking into account the known relationships between concepts in the field of cast iron, materials used and processing techniques. This allows the user to receive support by searching the results of experiments that relate to a specific material or processing treatment. Automatic presentation of the results which relate to similar materials or similar processing treatments is also possible, which should make the conducted analysis of the selection of materials or processing treatments more comprehensive by including a wider range of possible solutions.
Go to article

Abstract

The paper outlines the methodology of virtual design of a foundry plant as a system. The most important stage in the procedure involves the development of a model defined as a set of data about the system. Model development involves two stages: defining the model’s architecture and specifying the model data in the form of parameters and input-output relationships. The structure is understood as configuration of machines and transport units, representing the sub-systems and system components. As the main purpose of the simulation procedure is to find the characteristics of the system’s behaviour, the merits of the iterative method involving analysis, synthesis and evaluation of results are fully explored.
Go to article

Abstract

The problem of production flow in steel casting foundry is analysed in this paper. Because of increased demand and market competition, a reorganisation of the foundry process is required, including the elimination of manual labour and the implementation of automation and robotisation of certain processes. The problem is how to determine the real difference in work efficiency between human workers and robots. We show an analysis of the production efficiency of steel casting foundry operated by either human operators or industrial robots. This is a problem from the field of Operations Research for which the Discrete Event Simulation (DES) method is used. Three models are developed, including the foundry before and after automation when taking into consideration parameters of the availability of machines, operators and robots. We apply the OEE (Overall Equipment Effectiveness) indicator to present how the availability, performance and quality parameters influence the foundry’s productivity. In addition, stability of the simulation model was analysed. This approach allows for a better representation of real production processes and the obtained results can be used for further economic analysis.
Go to article

Abstract

The paper deals with problem of optimal used automatic workplace for HPDC technology - mainly from aspects of operations sequence, efficiency of work cycle and planning of using and servicing of HPDC casting machine. Presented are possible ways to analyse automatic units for HPDC. The experimental part was focused on the rationalization of the current work cycle time for die casting of aluminium alloy. The working place was described in detail in the project. The measurements were carried out in detail with the help of charts and graphs mapped cycle of casting workplace. Other parameters and settings have been identified. The proposals for improvements were made after the first measurements and these improvements were subsequently verified. The main actions were mainly software modifications of casting center. It is for the reason that today's sophisticated workplaces have the option of a relatively wide range of modifications without any physical harm to machines themselves. It is possible to change settings or unlock some unsatisfactory parameters.
Go to article

Abstract

Ensuring the required quality of castings is an important part of the production process. The quality control should be carried out in a fast and accurate way. These requirements can be met by the use of an optical measuring system installed on the arm of an industrial robot. In the article a methodology for assessing the quality of robotic measurement system to control certain feature of the casting, based on the analysis of repeatability and reproducibility is presented. It was shown that industrial robots equipped with optical measuring systems have the accuracy allowing their use in the process of dimensional control of castings manufactured by lost-wax process, permanent-mould casting, and pressure die-casting.
Go to article

Abstract

The paper presents the issue of production processes improvement in foundries in the area of finishing treatment of iron casts manufactured on automated foundry lines with vertical or horizontal mould division. Due to numerous factors which influence the efficiency of the processes, multi-criterion assessment tools were proposed in order to select the optimal solution for the assumed criteria. After determining the criteria weight using the Saaty method, a simulation experiment was designed and carried out which presents possible scenarios of casts finishing treatment operations. Basing on experiment reports from a computer model, particular solutions were evaluated using the Yager’s method. The evaluation of the experiment results was performed by experts who assessed different options according to each of the criteria adopted. After the establishment of the total standardized ratings by averaging the scores given by individual experts, the final decision was generated. Using the presented method, the best solution was chosen from among the analyzed scenarios.
Go to article

Abstract

The paper presents a practical example of improving quality and occupational safety on automated casting lines. Working conditions on the line of box moulding with horizontal mould split were analysed due to low degree of automation at the stage of cores or filters installation as well as spheroidizing mortar dosing. A simulation analysis was carried out, which was related to the grounds of introducing an automatic mortar dispenser to the mould. To carry out the research, a simulation model of a line in universal Arena software for modelling and simulation of manufacturing systems by Rockwell Software Inc. was created. A simulation experiment was carried out on a model in order to determine basic parameters of the working system. Organization and working conditions in other sections of the line were also analysed, paying particular attention to quality, ergonomics and occupational safety. Ergonomics analysis was carried out on manual cores installation workplace and filters installation workplace, and changes to these workplaces were suggested in order to eliminate actions being unnecessary and onerous for employees.
Go to article

Abstract

The paper presents a practical example of improvement of foundry production systems in terms of post-finishing of nodular iron castings produced in the conditions of bulk production for automotive industry. The attention was paid to high labour-intensive efforts, which are difficult to be subjected to mechanization and automation. The times of actions related to grinding processing of castings in three grinding positions connected with a belt conveyor were estimated with the use of a time study method. A bottleneck as well as limiting factors were specified in a system. A number of improvements were proposed, aimed at improving work organization on the castings postfinishing line. An analysis of work ergonomics at the workplace was made in order to eliminate unnecessary and onerous for the employee actions. A model of production system using the Arena software, on which a simulation experiment was conducted, was drawn up in order to visualize the analysed phenomena. The effects of the project were shown on graphs comparing times, costs, work ergonomics and overall efficiency of production equipment indicator.
Go to article

This page uses 'cookies'. Learn more