Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The article presents two modules operating in a hybrid CAPCAST system implemented in the Department of Applied Computer Science and Modelling, AGH University of Science and Technology, Cracow. These are the modules: CAPCAST-base of producers and CAPCAST-base of materials. Registered producers may benefit from other modules of the system, the base can also be an independent source of knowledge about Polish foundries and their production capacity, and can serve as a kind of platform for the implementation of the basic functions of e-business. The base of materials can also be a source of knowledge about materials, and it allows searching and filtering the lists of materials in terms of user-selected attributes using a multi-level search engine. This module is integrated with the rest of the system and can be used by other modules. The system has been developed at the AGH Department of Applied Computer Science and Modelling in Cracow.
Go to article

Abstract

This paper focuses on the thermal behavior of the starch-based binder (Albertine F/1 by Hüttenes-Albertus) used in foundry technology of molding sand. The analysis of the course of decomposition of the starch material under controlled heating in the temperature range of 25-1100°C was conducted. Thermal analysis methods (TG-DTG-DSC), pyrolysis gas chromatography coupled with mass spectrometry (Py-GC/MS) and diffuse reflectance spectroscopy (DRIFT) were used. The application of various methods of thermal analysis and spectroscopic methods allows to verify the binder decomposition process in relation to conditions in the form in both inert and oxidizing atmosphere. It was confirmed that the binder decomposition is a complex multistage process. The identification of CO2 formation at set temperature range indicated the progressive process of decomposition. A qualitative evaluation of pyrolysis products was carried out and the course of structural changes occurring in the presence of oxygen was determined based on thermo-analytical investigations the temperature of the beginning of binder degradation in set condition was determined. It was noticed that, significant intensification of Albertine F/1 sample decomposition with formation of more degradation products took place at temperatures above 550ºC. Aromatic hydrocarbons were identified at 1100ºC.
Go to article

This page uses 'cookies'. Learn more