Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

DNA sequencing remains one of the most important problems in molecular and computational biology. One of the methods used for this purpose is sequencing by hybridization. In this approach usually DNA chips composed of a full library of oligonucleotides of a given length are used, but in principle it is possible to use another types of chips. Isothermic DNA chips, being one of them, when used for sequencing may reduce hybridization error rate. However, it was not clear if a number of errors following from subsequence repetitions is also reduced in this case. In this paper a method for estimating resolving power of isothermic DNA chips is described which allows for a comparison of such chips and the classical ones. The analysis of the resolving power shows that the probability of sequencing errors caused by subsequence repetitions is greater in the case of isothermic chips in comparison to their classical counterparts of a similar cardinality. This result suggests that isothermic chips should be chosen carefully since in some cases they may not give better results than the classical ones.
Go to article

Abstract

In the paper, the problem of isothermic DNA sequencing by hybridization, without any errors in its input data, is presented and an exact polynomial-time algorithm solving the problem is described. The correctness of the algorithm is con.rmed by an enumerative proof.
Go to article

Abstract

Field and laboratory protocols that originally led to the success of published studies have previously been only briefly laid out in the methods sections of scientific publications. For the sake of repeatability, we regard the details of the methodology that allowed broad−range DNA studies on deep−sea isopods too valuable to be neglected. Here, a com− prehensive summary of protocols for the retrieval of the samples, fixation on board research vessels, PCR amplification and cycle sequencing of altogether six loci (three mitochondrial and three nuclear) is provided. These were adapted from previous protocols and developed especially for asellote Isopoda from deep−sea samples but have been successfully used in some other peracarids as well. In total, about 2300 specimens of isopods, 100 amphipods and 300 tanaids were sequenced mainly for COI and 16S and partly for the other markers. Although we did not set up an experimental design, we were able to analyze amplification and sequencing success of different methods on 16S and compare success rates for COI and 16S. The primer pair 16S SF/SR was generally reliable and led to better results than universal primers in all studied Janiroidea, except Munnopsidae and Dendrotionidae. The widely applied universal primers for the barcoding region of COI are problematic to use in deep−sea isopods with a success rate of 45–79% varying with family. To improve this, we recommend the development of taxon−specific primers.
Go to article

This page uses 'cookies'. Learn more